www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Rank, Transponierte
Rank, Transponierte < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rank, Transponierte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:28 Sa 25.08.2012
Autor: quasimo

Aufgabe
Sei 0 [mm] \not= [/mm] x [mm] \in \IR^n. [/mm] Bestimme die Ränge der Matrizen x [mm] x^t [/mm] und [mm] x^t [/mm] x.

[mm] x^t [/mm] x = [mm] x_1^2 +x_2^2+...+x_n^2 [/mm]
[mm] rank(x^t [/mm] x ) =1

x [mm] x^t [/mm] = [mm] \vektor{x_1 \\ x_2 \\\vdots\\x_n} \vektor{x_1&x_2&..&x_n}= \pmat{ x_1^2 & x_1 * x_2 &..&x_1 x_n\\ x_2 x_1 & x_2^2 &..&x_2 x_n \\ \vdots\\x_n x_1 & x_n x_2 &..&x_n^2} [/mm]
Wie ist das nun mit dem Rank ??


LG,
quasimo

        
Bezug
Rank, Transponierte: Antwort
Status: (Antwort) fertig Status 
Datum: 23:37 Sa 25.08.2012
Autor: Marcel

Hallo,

> Sei 0 [mm]\not=[/mm] x [mm]\in \IR^n.[/mm] Bestimme die Ränge der Matrizen x
> [mm]x^t[/mm] und [mm]x^t[/mm] x.
>  [mm]x^t[/mm] x = [mm]x_1^2 +x_2^2+...+x_n^2[/mm]
>  [mm]rank(x^t[/mm] x ) =1

ja, nur, ich würde hier einfach der Deutlichkeit wegen bzgl. der Aufgabe
schreiben
[mm] $$x^tx=(x_1^2+...+x_n^2)\,.$$ [/mm]

Natürlich kann man eine $1 [mm] \times [/mm] 1$-Matrix mit ihrem Eintrag identifizieren, aber weil in der Aufgabe von Matrizen die Rede ist, würde
ich eine $1 [mm] \times [/mm] 1$-Matrix hier auch noch als Matrix schreiben.

> x [mm]x^t[/mm] = [mm]\vektor{x_1 \\ x_2 \\\vdots\\x_n} \vektor{x_1&x_2&..&x_n}= \pmat{ x_1^2 & x_1 * x_2 &..&x_1 x_n\\ x_2 x_1 & x_2^2 &..&x_2 x_n \\ \vdots\\x_n x_1 & x_n x_2 &..&x_n^2}[/mm]
>  
> Wie ist das nun mit dem Rank ??

na, das ist doch einfach, Du hast nur zu weit gerechnet, deswegen siehst
Du's gar nicht mehr:
$$x [mm] x^t=\pmat{x_1*x^t\\x_2*x^t\\.\\.\\.\\x_n*x^t}\,.$$ [/mm]

Das zeigt doch, dass jede Zeile ein Vielfaches des Zeilenvektors [mm] $x^t$ [/mm] ist. Also?

P.S.
[mm] $x_1*x^t$ [/mm] ist die Multiplikation der Skalaren [mm] $x_1$ [/mm] mit dem Zeilenvektor
[mm] $x^t\,.$ [/mm] Also nicht an irgendein "Skalarprodukt" (zwischen zwei Vektoren)
denken!

Gruß,
  Marcel

Bezug
                
Bezug
Rank, Transponierte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:40 Sa 25.08.2012
Autor: quasimo

danke,
rank ist also zweimal 1 ;)

LG,
quasimo

Bezug
                        
Bezug
Rank, Transponierte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:41 Sa 25.08.2012
Autor: Marcel

Hallo,

> danke,
>  rank ist also zweimal 1 ;)

genau. Nur einmal hat man eine $1 [mm] \times [/mm] 1$-Matrix, das andere Mal
eine $n [mm] \times [/mm] n$-Matrix!

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]