www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Rang von Matrizen
Rang von Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rang von Matrizen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:32 Sa 19.01.2008
Autor: hase-hh

Aufgabe
Sei K ein Körper und A [mm] \in [/mm] M (m x n, K) sowie N [mm] \in [/mm] M (n x r, K).

1. Beweisen Sie die folgenden beiden Ungleichungen.

a) rang (A*B) [mm] \le [/mm] min(rang(A), rang(B))

b) rang(A) + rang(B) - n [mm] \le [/mm] rang (A*B)

2. Zeigen Sie, dass diese abschätzungen scharf sind, d.h. finden Sie Beispiele von Matrizen für die

c) rang (A*B) = min(rang(A), rang(B))

d) rang(A) + rang(B) - n = rang(A*B)

gilt.  

Guten Tag,

auch hier weiß ich nicht genau, wie ich vorgehen soll...

Ich weiß:

Der Rang einer Matrix ist gleich die Anzahl der unabhängigen Zeilenvektoren.

Ferner, vorausgesetzt wird A (m,n)-Matrix; B(n,n)-Matrix,

rang(A) = [mm] rang(A^T) [/mm]

rang(A) [mm] \le [/mm] min{m,n}

rang(B) = n   falls det(B) [mm] \ne [/mm] 0

rang(A*B) = rang(A)   falls det(B) [mm] \ne [/mm] 0


Mir fehlt der Ansatz!

Danke für eure Hilfe!

Gruß
Wolfgang





        
Bezug
Rang von Matrizen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:23 Mi 23.01.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]