www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Rang einer Matrix + Hauptvekto
Rang einer Matrix + Hauptvekto < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rang einer Matrix + Hauptvekto: Steig da nicht ganz durch
Status: (Frage) beantwortet Status 
Datum: 18:44 So 22.06.2008
Autor: HAWRaptor

Aufgabe
[mm] \vektor{u1' \\ u2' \\ u3'}=\pmat{ 1 & 1 & -2 \\ 1 & 1 & 2 \\ 1 & -1 & 4 }\vektor{u1 \\ u2 \\ u3} [/mm]

Hallo Leute,
ich versuche gerade, diese Aufgabe zu lösen. Als erstes bin ich durch diesen allg. Ansatz [mm] \vec{x}=\vec{c}*e^{\lambda t} [/mm] rein und habe den dreifachen EW 2 errechnet.
Wenn ich nun mit dem EW in die Matrix reingehe, sehe ich, dass ich eine Matrix habe mit dem Rang 1. Und genau hier liegt mein Problem, was heißt das eigentlich? Das ich nur 2 voneinander unabhängige Lösung finden kann? Ich habe als Eigenraum (laut Lösung) [mm] \vec{v}=\vektor{1 \\ 1 \\ 0}s1+\vektor{-2 \\ 0 \\ 1}s2 [/mm]
Meine Frage ist nun, wenn ich eine Matrix zweiten Ranges habe, könnte ich mir dann 3 Vektoren suchen, welche mit den Eigenraum auspannen? Weil mit der gegebenen Aufgabe muss ich ja noch einen Hauptvektor konstruieren...

        
Bezug
Rang einer Matrix + Hauptvekto: Antwort
Status: (Antwort) fertig Status 
Datum: 19:19 So 22.06.2008
Autor: MathePower

Hallo HAWRaptor,

> [mm]\vektor{u1' \\ u2' \\ u3'}=\pmat{ 1 & 1 & -2 \\ 1 & 1 & 2 \\ 1 & -1 & 4 }\vektor{u1 \\ u2 \\ u3}[/mm]
>  
> Hallo Leute,
>  ich versuche gerade, diese Aufgabe zu lösen. Als erstes
> bin ich durch diesen allg. Ansatz
> [mm]\vec{x}=\vec{c}*e^{\lambda t}[/mm] rein und habe den dreifachen
> EW 2 errechnet.
>  Wenn ich nun mit dem EW in die Matrix reingehe, sehe ich,
> dass ich eine Matrix habe mit dem Rang 1. Und genau hier
> liegt mein Problem, was heißt das eigentlich? Das ich nur 2
> voneinander unabhängige Lösung finden kann? Ich habe als
> Eigenraum (laut Lösung) [mm]\vec{v}=\vektor{1 \\ 1 \\ 0}s1+\vektor{-2 \\ 0 \\ 1}s2[/mm]
>  
> Meine Frage ist nun, wenn ich eine Matrix zweiten Ranges
> habe, könnte ich mir dann 3 Vektoren suchen, welche mit den
> Eigenraum auspannen? Weil mit der gegebenen Aufgabe muss
> ich ja noch einen Hauptvektor konstruieren...

Wenn eine Matrix Rang 2 hat, dann hat der zugehörige Eigenraum die Dimension 1, gibt also nur einen Eigenvektor.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]