www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Rang einer Matrix
Rang einer Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rang einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 04:37 Mi 17.11.2010
Autor: perl

Aufgabe
Bestimmen Sie in Abhängigkeit des Parameters s element IR den Rang der ;atrizen
A=
1 1    s
0 1-s 0
s s    1

B=
-s s -1
0 -1 s
[mm] s^{2} [/mm] 0 0

wie auch A*B.

Hallo! ich hab in meinem Buch eine Bsp.aufgabe dazu gefunden... da wird aber nur gesagt dass man den Rang einfach ablesen kann. Ist das hier auch der Fall? wie mache ich das?

        
Bezug
Rang einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 07:04 Mi 17.11.2010
Autor: angela.h.b.


> Bestimmen Sie in Abhängigkeit des Parameters s element IR
> den Rang der ;atrizen
>  A=
>  1 1    s
>  0 1-s 0
>  s s    1
>  
> B=
>  -s s -1
>   0 -1 s
>  [mm]s^{2}[/mm] 0 0
>  
> wie auch A*B.
>  Hallo! ich hab in meinem Buch eine Bsp.aufgabe dazu
> gefunden... da wird aber nur gesagt dass man den Rang
> einfach ablesen kann. Ist das hier auch der Fall? wie mache
> ich das?

Hallo,

für "Hauptstudium" sind Deine Kenntnisse ja echt etwas mager...

Weißt Du denn, wie der Rang einer Matrix definiert ist?
Allein daraus würden sich ja schon Ideen für die Vorgehensweise ergeben sollen.

Ansonsten und überhaupt:

bring die Matrizen auf Zeilenstufenform und lies ihren Rang (=Anzahl der Nichtnullzeilen) ab.
Er wird u.U. von s abhängen.

Bei Deinen Matrizen sieht man wirklich manches sofort, aber natürlich nur, wenn man weiß, was der Rang ist und wie man ihn berechnet und abliest.

Fang' jetzt mal an, Dich ein bißchen schlauer zu machen und starte erste Versuche.
Dann sehen wir weiter.

Gruß v. Angela


Bezug
                
Bezug
Rang einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:24 Mi 17.11.2010
Autor: perl

ja... is schon gut...
also, dass ich sie auf zeilenstufenform bringen muss ist mir klar, jedoch schaffe ich es einfach nicht bei diesen beiden matrizen.
Kann mir wer einen Tipp geben? ich vermute mal dass ich zeilen vertauschen muss. Bei B macht mir das Quadrat zu schaffen.
Also für einen Tipp wie ich anfangen kann wäre ich dankbar!
A*B berechnen ergibt nach meiner berechnung:

-s (s-1) (s-1)
0 (s-1) 0
0 [mm] (s^{2}-s) (s^{2}-s) [/mm]
richtig?

Bezug
                        
Bezug
Rang einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 12:34 Mi 17.11.2010
Autor: fred97


> ja... is schon gut...
> also, dass ich sie auf zeilenstufenform bringen muss ist
> mir klar, jedoch schaffe ich es einfach nicht bei diesen
> beiden matrizen.

Na , stimmt das wirklich ? bei A mußt Du nur das (-s)-fache der 1. Zeile zur 3. Zeile addieren !


>  Kann mir wer einen Tipp geben? ich vermute mal dass ich
> zeilen vertauschen muss. Bei B macht mir das Quadrat zu
> schaffen.
>  Also für einen Tipp wie ich anfangen kann wäre ich
> dankbar!
>  A*B berechnen ergibt nach meiner berechnung:
>  
> -s (s-1) (s-1)
>  0 (s-1) 0
>  0 [mm](s^{2}-s) (s^{2}-s)[/mm]
>  richtig?

Nein.

FRED


Bezug
                                
Bezug
Rang einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:56 Mi 17.11.2010
Autor: perl


> (-s)-fache der 1. Zeile zur 3. Zeile addieren !

ah super! dann erhalte ich:
für s= 1 --> rgA ist 1
für s=-1 --> rgA ist 2
für s [mm] \not= [/mm] +/- 1--> rgA ist 3

Bei B habe ich jetzt die III+ sI gerechnet:
-s s -1
0 -1 s
0 [mm] s^{2} [/mm] -s

Dann [mm] III(\bruch{1}{s}): [/mm]
-s s -1
0 -1 s
0 s -1

jetzt weiß ich nicht weiter... kann man jetzt mit der symetrie von
-1 s
s -1
irgendwie weitermachen?? oder bin ich auf dem holzweg?

>
>  >  A*B berechnen ergibt nach meiner berechnung:
>  >  

[mm] s^{3}-s [/mm]   s-1   s-1
0   s-1   0
0   0   [mm] s^{2}-s [/mm]

Bezug
                                        
Bezug
Rang einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 07:35 Do 18.11.2010
Autor: angela.h.b.


> > (-s)-fache der 1. Zeile zur 3. Zeile addieren !
>  
> ah super! dann erhalte ich:
>  für s= 1 --> rgA ist 1

>  für s=-1 --> rgA ist 2

>  für s [mm]\not=[/mm] +/- 1--> rgA ist 3

Hallo,

richtig.


>  
> Bei B habe ich jetzt die III+ sI gerechnet:
>  -s s -1
>  0 -1 s
>  0 [mm]s^{2}[/mm] -s
>  
> Dann [mm]III(\bruch{1}{s}):[/mm]

Das darfst Du allerdings nur für [mm] s\not=0. [/mm]

>  -s s -1
>  0 -1 s
>  0 s -1
>  
> jetzt weiß ich nicht weiter...

Wie wär's, würdest Du analog zu dem vorgehen, was Du bisher getan hast?
3.Zeile + s*2.Zeile?

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]