www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Rang einer Matrix
Rang einer Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rang einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:12 Di 02.09.2014
Autor: Joghurt

Aufgabe
Aufgabe 4.8: (Rang, allgemeine L¨osung)
Durch Gauß’sche Elimination ist aus einem Gleichungssystem f¨ur die Unbe-
kannten x1, x2, . . . , x6 die folgende erweiterte Koeffizientennmatrix in Trep-
penstufenform entstanden:

1 0 2 −1 2 0 3
0 1 0 3 1 −2 −5
0 0 0 0 1 0 5
0 0 0 0 0 0 0

1. Welchen Rang hat die Matrix des Gleichungssystems?
2. Welchen Rang hat die erweiterte Matrix?
3. Welche Unbekannten können Sie für eine Lösung frei wählen, und wie
sieht die allgemeine Lösung des Gleichungssystems aus?


Wie erkenne ich nun bei einer derartigen Matrix den Rang? Bei anderen Matrizen ist das ja recht offensichtlich, aber hier...  Ich komme auf einen Rang von 1 und für die erweiterete Matrix auf einen Rang von 3. Ist laut Lösung aber falsch. Ich hoffe, mir kann jemand helfen.

        
Bezug
Rang einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 12:51 Di 02.09.2014
Autor: fred97


> Aufgabe 4.8: (Rang, allgemeine L¨osung)
>  Durch Gauß’sche Elimination ist aus einem
> Gleichungssystem f¨ur die Unbe-
>  kannten x1, x2, . . . , x6 die folgende erweiterte
> Koeffizientennmatrix in Trep-
>  penstufenform entstanden:
>  
>  1 0 2 −1 2 0 3
>  0 1 0 3 1 −2 −5
>  0 0 0 0 1 0 5
>  0 0 0 0 0 0 0
>  
>  1. Welchen Rang hat die Matrix des Gleichungssystems?
>  2. Welchen Rang hat die erweiterte Matrix?
>  3. Welche Unbekannten können Sie für eine Lösung frei
> wählen, und wie
>  sieht die allgemeine Lösung des Gleichungssystems aus?
>  
> Wie erkenne ich nun bei einer derartigen Matrix den Rang?
> Bei anderen Matrizen ist das ja recht offensichtlich, aber
> hier...  Ich komme auf einen Rang von 1 und für die
> erweiterete Matrix auf einen Rang von 3. Ist laut Lösung
> aber falsch. Ich hoffe, mir kann jemand helfen.

Der Rang ist die Anzahl der linear unabhängigen Zeilen.

Der Rang der Matrix ist also 3 und ebenso hat die erw. Matrix den Rang 3.

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]