www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Randwertprobleme
Randwertprobleme < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Randwertprobleme: elliptische DGL
Status: (Frage) beantwortet Status 
Datum: 12:25 Mi 24.10.2007
Autor: sirtobi

Aufgabe
Bestimmen Sie die im Quadrat D = [mm] (0,\pi) [/mm] x [mm] (0,\pi) [/mm] zweimal stetige diffbare Funktionen [mm] u(x_1,x_2) [/mm] für die [mm] \Delta u(x_1,x_2) [/mm] = [mm] \partial^2u/\partial x_1^2 (x_1,x_2) [/mm] + [mm] \partial^2 u/\partial x_2^2(x_1,x_2) [/mm] = 0 mit [mm] (x_1,x_2) \in [/mm] D gilt und die folgende Randbedingungen erfüllen:
(a) [mm] u(x_1,0) [/mm] = [mm] \mu_1(x_1) [/mm] ,  [mm] u(x_1,\pi) [/mm] = [mm] \mu_2(x_1), [/mm]
[mm] u(0,x_2) [/mm] = c,  [mm] u(\pi,x_2) [/mm] = c

(b) [mm] u(x_1,0) [/mm] = [mm] \mu_1(x_1), u(x_1,\pi) [/mm] = c,
[mm] u(0,x_2) [/mm] = [mm] \mu_2(x_2), u(\pi,x_2) [/mm] = c

(c) [mm] \partial u/\partial x_2(x_1,0) [/mm] = c,  [mm] \partial u/\partial x_2(x_1,\pi) [/mm] = c
[mm] u(0,x_2) [/mm] = 0,  [mm] u(\pi,x_2) [/mm] = [mm] \mu(x_2) [/mm]

Hallo,

kennt jemand von Euch eine Seite, in der es Lösungsansätze für derartige Randwertprobleme erklärt sind?
Möchte die Aufgaben selber lösen, habe nur leider die nötigen Unterlagen dafür nicht gegeben.
Stichworte sind Separationsansatz und Fourierreihen-Entwicklung.

Danke Euch,
Sirtobias

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Randwertprobleme: Antwort
Status: (Antwort) fertig Status 
Datum: 18:44 Mi 24.10.2007
Autor: rainerS

Hallo!

> Bestimmen Sie die im Quadrat D = [mm](0,\pi)[/mm] x [mm](0,\pi)[/mm] zweimal
> stetige diffbare Funktionen [mm]u(x_1,x_2)[/mm] für die [mm]\Delta u(x_1,x_2)[/mm]
> = [mm]\partial^2u/\partial x_1^2 (x_1,x_2)[/mm] + [mm]\partial^2 u/\partial x_2^2(x_1,x_2)[/mm]
> = 0 mit [mm](x_1,x_2) \in[/mm] D gilt und die folgende
> Randbedingungen erfüllen:
>  (a) [mm]u(x_1,0)[/mm] = [mm]\mu_1(x_1)[/mm] ,  [mm]u(x_1,\pi)[/mm] = [mm]\mu_2(x_1),[/mm]
>  [mm]u(0,x_2)[/mm] = c,  [mm]u(\pi,x_2)[/mm] = c
>  
> (b) [mm]u(x_1,0)[/mm] = [mm]\mu_1(x_1), u(x_1,\pi)[/mm] = c,
>  [mm]u(0,x_2)[/mm] = [mm]\mu_2(x_2), u(\pi,x_2)[/mm] = c
>  
> (c) [mm]\partial u/\partial x_2(x_1,0)[/mm] = c,  [mm]\partial u/\partial x_2(x_1,\pi)[/mm]
> = c
>  [mm]u(0,x_2)[/mm] = 0,  [mm]u(\pi,x_2)[/mm] = [mm]\mu(x_2)[/mm]
>  Hallo,
>  
> kennt jemand von Euch eine Seite, in der es Lösungsansätze
> für derartige Randwertprobleme erklärt sind?
>  Möchte die Aufgaben selber lösen, habe nur leider die
> nötigen Unterlagen dafür nicht gegeben.
>  Stichworte sind Separationsansatz und
> Fourierreihen-Entwicklung.

Separationsansatz:
Dazu nimmt man an, dass die Funktion [mm]u(x_1,x_2)[/mm] sich in zwei Funktionen [mm]u_1(x_1)[/mm] und [mm]u_2(x_2)[/mm] zerlegen lässt, von denen jede nur von einer Variablen abhängt. Wie die Zerlegung genau aussieht, hängt vom Problem ab.

Im vorliegenden Fall würde ich [mm]u(x_1,x_2)=u_1(x_1)+u_2(x_2)[/mm] oder [mm]u(x_1,x_2)=u_1(x_1)*u_2(x_2)[/mm] ansetzen. Der Trick ist dann, die entstehende Gleichung so umzuformen, dass links vom Gleichheitszeichens nur Terme mit [mm]x_1[/mm] stehen, und rechts nur Terme mit [mm]x_2[/mm]. Dann muss jede Seite für sich konstant sein.

Beispiel: [mm]u(x_1,x_2)=u_1(x_1)+u_2(x_2)[/mm]
Die partielle DGL wird dann zu: [mm]u''_1(x_1) + u''_2(x_2) = 0[/mm] oder [mm]u''_1(x_1) = -u''_2(x_2)[/mm].
Wenn du hier [mm]x_1[/mm] festhälst, ist die linke Seite konstant. Daher muss auch die rechte Seite für alle [mm]x_2[/mm] denselben Wert ergeben.
Du hast also:
[mm]u''_1(x_1) = K[/mm]
[mm]u''_2(x_2) = -K [/mm]
Dabei ist K eine zunächst noch nicht bestimmte Konstante, die sich aus den Randbedingungen ergibt.

Wenn du dir die drei Teilaufgaben anschaust, siehst du allerdings, dass du mit diesem Ansatz die Randbedingungen nicht erfüllen kannst. Daher solltest du besser den Produktansatz [mm]u(x_1,x_2)=u_1(x_1)*u_2(x_2)[/mm] verwenden, woraus du wieder zwei getrennten gewöhnliche DGLen für [mm]u_1(x_1)[/mm] und [mm]u_2(x_2)[/mm] erhältst.

Viele Grüße
  Rainer

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
        
Bezug
Randwertprobleme: Antwort
Status: (Antwort) fertig Status 
Datum: 08:01 Do 25.10.2007
Autor: MatthiasKr

Hi,
> Bestimmen Sie die im Quadrat D = [mm](0,\pi)[/mm] x [mm](0,\pi)[/mm] zweimal
> stetige diffbare Funktionen [mm]u(x_1,x_2)[/mm] für die [mm]\Delta u(x_1,x_2)[/mm]
> = [mm]\partial^2u/\partial x_1^2 (x_1,x_2)[/mm] + [mm]\partial^2 u/\partial x_2^2(x_1,x_2)[/mm]
> = 0 mit [mm](x_1,x_2) \in[/mm] D gilt und die folgende
> Randbedingungen erfüllen:
>  (a) [mm]u(x_1,0)[/mm] = [mm]\mu_1(x_1)[/mm] ,  [mm]u(x_1,\pi)[/mm] = [mm]\mu_2(x_1),[/mm]
>  [mm]u(0,x_2)[/mm] = c,  [mm]u(\pi,x_2)[/mm] = c
>  
> (b) [mm]u(x_1,0)[/mm] = [mm]\mu_1(x_1), u(x_1,\pi)[/mm] = c,
>  [mm]u(0,x_2)[/mm] = [mm]\mu_2(x_2), u(\pi,x_2)[/mm] = c
>  
> (c) [mm]\partial u/\partial x_2(x_1,0)[/mm] = c,  [mm]\partial u/\partial x_2(x_1,\pi)[/mm]
> = c
>  [mm]u(0,x_2)[/mm] = 0,  [mm]u(\pi,x_2)[/mm] = [mm]\mu(x_2)[/mm]
>  Hallo,
>  
> kennt jemand von Euch eine Seite, in der es Lösungsansätze
> für derartige Randwertprobleme erklärt sind?
>  Möchte die Aufgaben selber lösen, habe nur leider die
> nötigen Unterlagen dafür nicht gegeben.
>  Stichworte sind Separationsansatz und
> Fourierreihen-Entwicklung.
>  
> Danke Euch,
>  Sirtobias
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

wie von rainer schon gesagt, nimm den ansatz

$u(x,y)=f(x)g(y)$

die laplace-gleichung ist dann

[mm] $\Delta [/mm] u(x)=f''(x)g(y)+f(x)g''(y)=0$

durch umstellen erhaeltst du

[mm] $\frac{f''(x)}{f(x)}=-\frac{g''(y)}{g(y)}=\lambda$ [/mm]

f und g muessen also gewisse eigenfunktionen des 1-dim. laplace operators sein. Fuer einfache (konstante) randwerte bist du dann schon fast fertig. Fuer variable randwerte musst du diese in fourierreihen entwickeln und dann koeffizientenvergleich machen (oder so aehnlich...).

Habe leider keine gute erklaerung im netz gefunden, aber wenn du noch mal intensiv googlest ('laplace gleichung separation variablen'), solltest du mit etwas geduld was finden...


gruss
matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]