www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - Radius von Ball unter Brett
Radius von Ball unter Brett < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Radius von Ball unter Brett: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:06 Mo 11.06.2007
Autor: dexter

Aufgabe
Ein 2,60m langes und 1,00m breites Brett liegt schräg an einer Wand. Die Befestigung ist 1,00m hoch. Wie viel cm darf der Durchmesser eines Balls höchstens betragen, damit der Ball noch unter das Brett passt?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich brauche nur einen kleinen Denkansatz, so weit bin ich gekommen:
Ein Brett ist an einer Wand befestigt(in x3 Richtung 1m) und dem Boden ( in x2 Richtung 2,4m) auf.
Darunter liegt ein Ball. Wie groß kann der Durchmesser des Balles maximal sein?
Das alles in ein dreidimensionales Koordinatensystem übertragen würde ja bedeuten:
Die Wand = x1x3-Ebene
Der Boden = x1x2Ebene
Das Brett = [mm] [\vektor{x \\ y \\ z} [/mm] - [mm] \vektor{0 \\ 0 \\ 1}] \* \vektor{0 \\ 1 \\ 2,4} [/mm] = 0

Wenn ich zu jeder Ebene eine orthogonale Ebene nehme und diese drei dann zum Schnitt bringe, dann dürfte ich ja den Mittelpunkt des Balles bekommen. Ich weiß jetzt nur nicht, wo ich die jeweiligen Stützvektoren anzusiedeln habe, damit der Abstand zu diesem Mittelpunkt von jeder Ebene gleich groß ist.

mfg Dex

Wie komme ich jetzt

        
Bezug
Radius von Ball unter Brett: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:25 Mo 11.06.2007
Autor: noerpel

darf ich mal fragen, ob es denn so verlangt ist? oder anders:
spricht was dagegen, es ueber den inkreis zu machen? ich meine
du hast alle drei seitenlaengen gegeben, im prinzip mit dem
rechten winkel auch die beiden anderen, da sollte es doch nicht
sooooo der akt sein den radius des inkreises direkt auszurechnen?
von allen gedanken bzgl vektoren und ebenen befreien:)

Bezug
                
Bezug
Radius von Ball unter Brett: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:55 Di 12.06.2007
Autor: dexter

Innenkreis ist gut :).
Hab mich voll auf die neuen Sachen in Vektorgeometrie fixiert...

Ich hab das jetzt mal auf diese Weise probiert:
Versucht die Winkelhalbierenden Geraden zu berechnen..
Erst alle Winkel des Dreiecks, in dem der Kreis drin ist  berechnet (Problem auf das wesentliche dezimiert).
Und beim nächsten Schritt bin ich mir nicht so sicher, weil da nur Schunt rauskommt:
Das Skalarprodukt so aufgelöst, dass ich einen unbekannten Vektor ausrechne. Macht man das so? Oder gibt es noch eine andere Möglichkeit zu einem Vektor einen unbekannten Vektor durch gegebenen Winkel zu berechnen?

Lösung wäre ja dann:
Die drei entstehenden Vektoren sind Richtungsvektoren der winkelhalbierenden Geraden, die sich alle im Mittelpunkt des Innenkreises schneiden. Von diesem Punkt rechne ich dann den Abstand zur Ebene des Brettes und habe den Radius, dieser verdoppelt ist der Durchmesser.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]