www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Radikal, ausgeartete Bilinearf
Radikal, ausgeartete Bilinearf < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Radikal, ausgeartete Bilinearf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:22 Mo 19.10.2009
Autor: NightmareVirus

Aufgabe
Es seien [mm] $\mathcal{U},\mathcal{W} \leq \mathbb{F}_5^{4 \times 1}$ [/mm] definiert durch [mm] $\mathcal{U} [/mm] := [mm] \langle \begin{pmatrix}0\\1\\0\\0 \end{pmatrix}, \begin{pmatrix}0\\2\\1\\0\end{pmatrix} \rangle$, \quad [/mm]
[mm] $\mathcal{W} [/mm] := [mm] \langle \begin{pmatrix}0\\1\\0\\0 \end{pmatrix}, \begin{pmatrix}-2\\1\\1\\1\end{pmatrix} \rangle$\par [/mm]

Ferner sei $A [mm] \in \mathbb{F}_5^{4 \times 4}$ [/mm] gegeben durch

$$A := [mm] \begin{pmatrix}1 &1 &-1 &2\\1& 0& 1&1\\ -1&1&1&1\\2&1&1&2\end{pmatrix}$$ [/mm]
und es sei [mm] $\Phi [/mm] : [mm] \mathbb{F}_5^{4\times 1} \times \mathbb{F}_5^{4\times 1} \to \mathbb{F}_5,\; [/mm] (x,y) [mm] \mapsto x^{tr}Ay$ [/mm] die durch $A$ definierte symmetrische Bilinearform auf [mm] $\mathbb{F}_5^{4\times 1}$. [/mm]

(d) Bestimmen Sie das Radikal [mm] $(\mathbb{F}_5^{4\times 1})^{\perp}$ [/mm] und zeigen Sie, dass [mm] $\Phi$ [/mm] ausgeartet ist.

Hallo

Ich weiss noch nicht so recht wie ich hier anfangen soll. Zunächst:

Das Radikal von [mm] $\Phi$ [/mm] besteht aus all denjenigen Vektoren aus $v [mm] \in [/mm] V$ für die [mm] $\Phi(v,w) [/mm] = 0 [mm] \quad \forall [/mm] w [mm] \in [/mm] V$ gilt.

Die Bilinearform [mm] $\Phi$ [/mm] ist nicht-ausgeartet genau dann, wenn ihr Radikal
nur aus dem Nullvektor besteht.

Das Problem ist, ich weiss nicht so recht wie ich - auch mit dieser Definition - das Radikal bestimmen soll.
Mein Ansatz:

Eine Basis von [mm] $(\mathbb{F}_5^{4\times 1})^{\perp}$ [/mm] ist
$B = [mm] (e_1,e_2,e_3,e_4)$ [/mm]  (wobei [mm] $e_i$ [/mm] der $i$-te Einheitsvektor ist).

Sei nun $y = [mm] \begin{pmatrix}y_1\\y_2\\y_3\\y_4 \end{pmatrix} [/mm]
Nun berechne ich [mm] $e_i [/mm] * A * y$. Ich erhalte die Zeilen von $A$. Das für Orthogonalität das Skalarprodukt 0 sein muss, erhalte somit das LGS $A=0$

Ist das der richtige Ansatz?

        
Bezug
Radikal, ausgeartete Bilinearf: Antwort
Status: (Antwort) fertig Status 
Datum: 23:03 Mo 19.10.2009
Autor: felixf

Hallo!

> Es seien [mm]\mathcal{U},\mathcal{W} \leq \mathbb{F}_5^{4 \times 1}[/mm]
> definiert durch [mm]\mathcal{U} := \langle \begin{pmatrix}0\\1\\0\\0 \end{pmatrix}, \begin{pmatrix}0\\2\\1\\0\end{pmatrix} \rangle[/mm],
> [mm]\quad[/mm]
>   [mm]\mathcal{W} := \langle \begin{pmatrix}0\\1\\0\\0 \end{pmatrix}, \begin{pmatrix}-2\\1\\1\\1\end{pmatrix} \rangle[/mm][mm] \par[/mm]

Also erstmal: was haben diese beiden UVRe denn mit der Aufgabe zu tun?!

> Ferner sei [mm]A \in \mathbb{F}_5^{4 \times 4}[/mm] gegeben durch
>  
> [mm]A := \begin{pmatrix}1 &1 &-1 &2\\1& 0& 1&1\\ -1&1&1&1\\2&1&1&2\end{pmatrix}[/mm]
>  
> und es sei [mm]\Phi : \mathbb{F}_5^{4\times 1} \times \mathbb{F}_5^{4\times 1} \to \mathbb{F}_5,\; (x,y) \mapsto x^{tr}Ay[/mm]
> die durch [mm]A[/mm] definierte symmetrische Bilinearform auf
> [mm]\mathbb{F}_5^{4\times 1}[/mm].
>  
> (d) Bestimmen Sie das Radikal [mm](\mathbb{F}_5^{4\times 1})^{\perp}[/mm]
> und zeigen Sie, dass [mm]\Phi[/mm] ausgeartet ist.
>  
> Hallo
>  
> Ich weiss noch nicht so recht wie ich hier anfangen soll.
> Zunächst:
>  
> Das Radikal von [mm]\Phi[/mm] besteht aus all denjenigen Vektoren
> aus [mm]v \in V[/mm] für die [mm]\Phi(v,w) = 0 \quad \forall w \in V[/mm]
> gilt.

Genau. Hier ist ja [mm] $\Phi(v, [/mm] w) = [mm] v^{tr} [/mm] A w$; durch einsetzen der Standardeinheitsvektoren fuer $w$ siehst du sofort, dass [mm] $\Phi(v, [/mm] w) = 0$ fuer alle $w [mm] \in [/mm] V$ nur sein kann, wenn [mm] $v^{tr} [/mm] A = 0$ ist. Das ist wiederum der Fall, wenn [mm] $A^{tr} [/mm] v = 0$ ist.

Also: du suchst den Kern von [mm] $A^{tr}$. [/mm]

> Die Bilinearform [mm]\Phi[/mm] ist nicht-ausgeartet genau dann, wenn
> ihr Radikal
>  nur aus dem Nullvektor besteht.
>  
> Das Problem ist, ich weiss nicht so recht wie ich - auch
> mit dieser Definition - das Radikal bestimmen soll.
>  Mein Ansatz:
>  
> Eine Basis von [mm](\mathbb{F}_5^{4\times 1})^{\perp}[/mm] ist
>  [mm]B = (e_1,e_2,e_3,e_4)[/mm]  (wobei [mm]e_i[/mm] der [mm]i[/mm]-te Einheitsvektor
> ist).
>  
> Sei nun $y = [mm]\begin{pmatrix}y_1\\y_2\\y_3\\y_4 \end{pmatrix}[/mm]
>  
> Nun berechne ich [mm]e_i * A * y[/mm]. Ich erhalte die Zeilen von [mm]A[/mm].

Wieso willst du das tun?

> Das für Orthogonalität das Skalarprodukt 0 sein muss,
> erhalte somit das LGS [mm]A=0[/mm]

Das ist ein kein LGS.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]