Radial unbeschränkt < Optimierung < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Betrachten Sie die Funktion $f: [mm] \IR^n \to \IR$ [/mm] mit [mm] $f(x)=\bruch{1}{2}x^THx+b^Tx+c$, [/mm] wobei [mm] $H\in \IR^{n \times n}, x\in \IR^n, b\in \IR^n, c\in \IR$ [/mm] und $H$ positiv definit. Zeigen Sie
a) $f$ ist radial unbeschränkt
b) $f$ ist streng konvex |
Hallo zusammen,
erstmal zur Definition: $f$ heißt radial unbeschränkt, wenn [mm] $\lim_{||x||\to \infty}f(x)=\infty$.
[/mm]
Ich hab einige Probleme mit beiden Aufgaben. Zu zeigen, dass der $f$ gegen Unendlich geht, wenn die Norm von $x$ unendlich groß wird, ist etwas seltsam.
[mm] $\lim_{||x||\to \infty}\bruch{1}{2}x^THx+b^Tx+c=...$.
[/mm]
Ich hatte versucht irgendwie $x^THx$ mit einer Norm zu identifizieren, aber es ist ja bis auf die pos. Definitheit nichts über $H$ bekannt. Warum gilt dann $x^THx [mm] \to \infty$? [/mm] Es ist ja erstmal nur $x^THx>0$ für alle $x$...
Zu b)
Also irgendwie ist mir schon klar, dass $H$ vermutlich die Hesse-Matrix sein wird. Aber das ist in der Aufgabe ja nicht gesagt. Ich habe erst versucht mit dem Kriterium
[mm] $f((1-\lambda)x+\lambda y)<(1-\lambda)f(x)+\lambda [/mm] f(y)$ für [mm] $\lambda \in [/mm] (0,1)$ zu arbeiten. Allerdings erhalte ich dann solche gemischten Terme, in denen bspw. [mm] $(1-\lambda)x^THy$ [/mm] oder ähnliches vorkommt und die ich dann nicht weiter zusammenfassen kann, bzw. über die ich nicht sagen kann ob sie größer 0 sind, oder ähnliches.
Dann hab ich versucht über die zweite Ableitung von $f$ zu gehen, mal davon abgesehen, dass nirgendwo gesagt ist, dass $f$ diff'bar ist. Die zweite Ableitung sollte doch $f''(x)=x^THx$ sein und die ist aufgrund der pos. Definitheit von $H$ >0, also ist $f$ streng konvex, aber wie komme ich zu dieser Ableitung? darf ich voraussetzen, dass diese existiert, usw?
Viele Dank schon mal für eure Hilfe
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:37 So 21.10.2012 | Autor: | Marcel |
Hallo,
> Betrachten Sie die Funktion [mm]f: \IR^n \to \IR[/mm] mit
> [mm]f(x)=\bruch{1}{2}x^THx+b^Tx+c[/mm], wobei [mm]H\in \IR^{n \times n}, x\in \IR^n, b\in \IR^n, c\in \IR[/mm]
> und [mm]H[/mm] positiv definit. Zeigen Sie
> a) [mm]f[/mm] ist radial unbeschränkt
> b) [mm]f[/mm] ist streng konvex
> Hallo zusammen,
>
> erstmal zur Definition: [mm]f[/mm] heißt radial unbeschränkt, wenn
> [mm]\lim_{||x||\to \infty}f(x)=\infty[/mm].
>
> Ich hab einige Probleme mit beiden Aufgaben. Zu zeigen,
> dass der [mm]f[/mm] gegen Unendlich geht, wenn die Norm von [mm]x[/mm]
> unendlich groß wird, ist etwas seltsam.
> [mm]\lim_{||x||\to \infty}\bruch{1}{2}x^THx+b^Tx+c=...[/mm].
>
> Ich hatte versucht irgendwie [mm]x^THx[/mm] mit einer Norm zu
> identifizieren, aber es ist ja bis auf die pos. Definitheit
> nichts über [mm]H[/mm] bekannt. Warum gilt dann [mm]x^THx \to \infty[/mm]?
baue es mal "schrittweise" auf:
Ist [mm] $e_k$ [/mm] der [mm] $k\,$-te [/mm] Einheitsvektor des [mm] $\IR^n\,,$ [/mm] so betrachten wir
mal [mm] $x^k(\lambda):=\lambda*e_k$ [/mm] für [mm] $\lambda \in \IR\,.$
[/mm]
Klar ist
[mm] $$x^k(\lambda)^THx^k(\lambda)> [/mm] 0$$
und
[mm] $$x^k(\lambda)^THx^k(\lambda)=\lambda^2 e_k^THe_k\,,$$
[/mm]
wobei ja auch [mm] $e_k^THe_k [/mm] > 0$ gelten muss. Was passiert nun bei
[mm] $|\lambda| \to \infty$?
[/mm]
--
Einschub: Das [mm] $+c\,$ [/mm] am Ende ist nicht so wichtig, aber eigentlich müßtest
Du bei obigen Überlegungen nicht nur [mm] $\frac{1}{2}x^k(\lambda)^THx^k(\lambda)$ [/mm] betrachten, wenn [mm] $|\lambda| \to \infty\,,$
[/mm]
sondern mindestens den Ausdruck [mm] $\frac{1}{2}x^k(\lambda)^THx^k(\lambda)+b^Tx^k(\lambda)$...
[/mm]
Mir ist nicht ganz klar, wenn ich das so wie oben schreibe, ob Dir das auch
klar ist!
--
Und wenn Dun nun $x [mm] \in \IR^{n} \setminus \{0\}$ [/mm] hast, so kannst Du
[mm] $x\,$ [/mm] als Linearkombination der Einheitsvektoren schreiben:
[mm] $$x=\sum_{k=1}^n x_k e_k\,.$$
[/mm]
Jetztv musst Du mal gucken, ob Du eine Abschätzung kennst (oder findest),
die Dir dann hilft, mit der Verüberlegung dann die Behauptung zu folgern...
Das als erste Idee!
Gruß,
Marcel
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:20 Do 25.10.2012 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|