www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - R-Moduln und Isomorphismus
R-Moduln und Isomorphismus < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

R-Moduln und Isomorphismus: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:31 Mi 13.06.2007
Autor: Milka_Kuh

Aufgabe
Sei R ein Ring und [mm] M_{\alpha}, \alpha \in [/mm] I, eine Familie von R-Moduln.
Z.z: die kanonische Abb. [mm] \phi: [/mm]
[mm] \produkt_{\alpha \in I} Hom_{R}(M_{\alpha},N) \to Hom_{R}(\oplus M_{\alpha}, [/mm] N),
die jeder Familie von Abb. [mm] (f_{\alpha})_{\alpha \in I} [/mm] die Abb. [mm] (m_{\alpha})_{\alpha \in I} \mapsto \summe_{\alpha \in I} f_{\alpha}(m_{\alpha}) [/mm] zuordnet, wohldefiniert ist und für jeden R-Modul N ein Isomorphismus ist.

Hallo,
bei dieser Aufgabe habe ich an manchen Stellen Schwierigkeiten und hoffe, dass mir jemand weiter hilft! Dafür wäre ich sehr dankbar.
Ich habe folgendes gemacht:
Es gilt doch [mm] \phi: (f_{\alpha})_{\alpha \in I} \mapsto \psi(m_{\alpha})_{\alpha \in I} [/mm] = [mm] \summe_{\alpha \in I} f_{\alpha}(m_{\alpha}) [/mm]

Stimmt die Definition der Abb. so? Diese Abb. hab ich mir aus den Angaben zusammengebastelt, und bin mir da nicht sicher, ob das richtig ist :-)

Zur Wohldefiniertheit:
Gelte [mm] f_{\alpha} [/mm] = [mm] g_{\alpha} [/mm]
[mm] \gdw f_{\alpha} [/mm] - [mm] g_{\alpha} [/mm] = 0
[mm] \gdw \summe_{\alpha \in I} (f_{\alpha} [/mm] - [mm] g_{\alpha}) (m_{\alpha}) [/mm] = 0, wegen der direkten Summe.
Hier weiß ich nicht, ob ich einfach dieses [mm] (m_{\alpha}) [/mm]  dazu schreiben kann...
[mm] \gdw \summe_{\alpha \in I} f_{\alpha}(m_{\alpha}) [/mm] -  [mm] \summe_{\alpha \in I} (g_{\alpha}(m_{\alpha}) [/mm] = 0
[mm] \gdw \summe_{\alpha \in I} f_{\alpha}(m_{\alpha}) [/mm] =  [mm] \summe_{\alpha \in I} (g_{\alpha}(m_{\alpha}) [/mm]
[mm] \gdw \phi((f_{\alpha})_{\alpha}) [/mm] = [mm] \phi((g_{\alpha})_{\alpha}) [/mm]

Stimmt das so?

Dann zum Gruppenhomomorphismus:
[mm] \phi((f_{\alpha})_{\alpha} [/mm] + [mm] ((g_{\alpha})_{\alpha}) [/mm] = [mm] \summe_{\alpha \in I} (f_{\alpha} [/mm] + [mm] g_{\alpha}) (m_{\alpha}) [/mm] = [mm] \summe_{\alpha \in I} f_{\alpha} (m_{\alpha}) [/mm]  + [mm] \summe_{\alpha \in I} g_{\alpha} (m_{\alpha}) [/mm] = [mm] \phi((f_{\alpha})_{\alpha}) [/mm] + [mm] \phi((g_{\alpha})_{\alpha}) [/mm]

Da weiß ich nicht, ob das so stimmt.

Dann zur Bijektivität von [mm] \phi: [/mm]
Bei der Injektivität habe ich einfach den Beweis von der Wohldefiniertheit von hinten aufgezogen.
Kann man das so machen?

Zur Surjektivität:
Sei [mm] \phi((f_{\alpha})_{\alpha}) [/mm] := w
[mm] \summe_{\alpha \in I} f_{\alpha} (m_{\alpha}) [/mm] = w
Jetzt habe ich ein Problem, da ich nicht weiß, wie ich weiter machen soll. Man muss, glaub ich, eine Abb. [mm] f_{alpha} [/mm] finden, die dies erfüllt.
Aber wie geht das?

Danke schonmal für die Hilfe.

Lg, Milka

        
Bezug
R-Moduln und Isomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 09:35 Mo 18.06.2007
Autor: Mad_phoenix


> Sei R ein Ring und [mm]M_{\alpha}, \alpha \in[/mm] I, eine Familie
> von R-Moduln.
>  Z.z: die kanonische Abb. [mm]\phi:[/mm]
>  [mm]\produkt_{\alpha \in I} Hom_{R}(M_{\alpha},N) \to Hom_{R}(\oplus M_{\alpha},[/mm]
> N),
> die jeder Familie von Abb. [mm](f_{\alpha})_{\alpha \in I}[/mm] die
> Abb. [mm](m_{\alpha})_{\alpha \in I} \mapsto \summe_{\alpha \in I} f_{\alpha}(m_{\alpha})[/mm]
> zuordnet, wohldefiniert ist und für jeden R-Modul N ein
> Isomorphismus ist.
>  Hallo,
>  bei dieser Aufgabe habe ich an manchen Stellen
> Schwierigkeiten und hoffe, dass mir jemand weiter hilft!
> Dafür wäre ich sehr dankbar.
>  Ich habe folgendes gemacht:
>  Es gilt doch [mm]\phi: (f_{\alpha})_{\alpha \in I} \mapsto \psi(m_{\alpha})_{\alpha \in I}[/mm]
> = [mm]\summe_{\alpha \in I} f_{\alpha}(m_{\alpha})[/mm]
>
> Stimmt die Definition der Abb. so? Diese Abb. hab ich mir
> aus den Angaben zusammengebastelt, und bin mir da nicht
> sicher, ob das richtig ist :-)
>  
> Zur Wohldefiniertheit:
>  Gelte [mm]f_{\alpha}[/mm] = [mm]g_{\alpha}[/mm]
>  [mm]\gdw f_{\alpha}[/mm] - [mm]g_{\alpha}[/mm] = 0
>  [mm]\gdw \summe_{\alpha \in I} (f_{\alpha}[/mm] - [mm]g_{\alpha}) (m_{\alpha})[/mm]
> = 0, wegen der direkten Summe.
>  Hier weiß ich nicht, ob ich einfach dieses [mm](m_{\alpha})[/mm]  
> dazu schreiben kann...
> [mm]\gdw \summe_{\alpha \in I} f_{\alpha}(m_{\alpha})[/mm] -  
> [mm]\summe_{\alpha \in I} (g_{\alpha}(m_{\alpha})[/mm] = 0
>  [mm]\gdw \summe_{\alpha \in I} f_{\alpha}(m_{\alpha})[/mm] =  
> [mm]\summe_{\alpha \in I} (g_{\alpha}(m_{\alpha})[/mm]
>  [mm]\gdw \phi((f_{\alpha})_{\alpha})[/mm]
> = [mm]\phi((g_{\alpha})_{\alpha})[/mm]
>  
> Stimmt das so?

Ich glaube nicht. Ich verstehe die Wohldefiniertheit hier so, dass du zeigen sollst, dass das bild von einem [mm]f_\alpha[/mm] auch wirklich aus [mm] Hom_{R}(\oplus M_{\alpha},[/mm]  stammt. Was versuchst du denn da zu zeigen?

>  
> Dann zum Gruppenhomomorphismus:
>  [mm]\phi((f_{\alpha})_{\alpha}[/mm] + [mm]((g_{\alpha})_{\alpha})[/mm] =
> [mm]\summe_{\alpha \in I} (f_{\alpha}[/mm] + [mm]g_{\alpha}) (m_{\alpha})[/mm]

[mm]\summe_{\alpha \in I} (f_{\alpha} + \summe_{\alpha \in I}g_{\alpha}) (m_{\alpha})[/mm]

> = [mm]\summe_{\alpha \in I} f_{\alpha} (m_{\alpha})[/mm]  +
> [mm]\summe_{\alpha \in I} g_{\alpha} (m_{\alpha})[/mm] =
> [mm]\phi((f_{\alpha})_{\alpha})[/mm] + [mm]\phi((g_{\alpha})_{\alpha})[/mm]
>  
> Da weiß ich nicht, ob das so stimmt.

Es stimmt alles soweit nur das du den entscheidenden Schritt übersprungen hast meiner Ansicht nach :). Das Problem hier ist nähmlich nicht das auseinander ziehen einzelner f und g sondern die Tatsache dass die Indexmenge hier nicht endlich sein muss und man dann nicht einfahc die Summen auseinander ziehen kann.  Hierfür musst du noch mit der Definition der Direkten Summe argumentieren.

>  
> Dann zur Bijektivität von [mm]\phi:[/mm]
>  Bei der Injektivität habe ich einfach den Beweis von der
> Wohldefiniertheit von hinten aufgezogen.
> Kann man das so machen?
>  
> Zur Surjektivität:
>  Sei [mm]\phi((f_{\alpha})_{\alpha})[/mm] := w
>  [mm]\summe_{\alpha \in I} f_{\alpha} (m_{\alpha})[/mm] = w
>  Jetzt habe ich ein Problem, da ich nicht weiß, wie ich
> weiter machen soll. Man muss, glaub ich, eine Abb.
> [mm]f_{alpha}[/mm] finden, die dies erfüllt.
>  Aber wie geht das?
>  
> Danke schonmal für die Hilfe.
>  
> Lg, Milka


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]