www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - R-Moduln
R-Moduln < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

R-Moduln: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 23:23 Mo 16.06.2008
Autor: Esra

Aufgabe
Es seien R ein kommutativer Ring mit 1, M, M' R-Moduln und g: M [mm] \to [/mm] M,
g': M' [mm] \to [/mm] M' R-lineare Abbildungen.
Zeigen Sie, dass die so gegebenen R(X)-Moduln (M,g) und ( M',g') genau dann isomorph sind, wenn ein Isomorphismus f: M [mm] \to [/mm] M' von R-Moduln existiert, so daß gilt g' = f [mm] \circ [/mm] g [mm] \circ f^{-1}. [/mm]  

Hallo zusammen,

ich brauche dringend hilfe,

wie soll ich hier bei so vielen Einzelheiten einen klaren blick bekommen.
Ganz in ernst, verstehe nicht von dieser Aufgabenstellung.

Würde mich auf jede Rücksprache freuen.
Vielen dank im Voraus

Lg  


        
Bezug
R-Moduln: Antwort
Status: (Antwort) fertig Status 
Datum: 08:28 Di 17.06.2008
Autor: angela.h.b.


> Es seien R ein kommutativer Ring mit 1, M, M' R-Moduln und
> g: [mm]M\to[/mm] M,
> g': [mm]M'\to[/mm] M' R-lineare Abbildungen.
>  Zeigen Sie, dass die so gegebenen R(X)-Moduln (M,g) und (
> M',g') genau dann isomorph sind, wenn ein Isomorphismus f:
> [mm]M\toM'[/mm] von R- Moduln existiert, do daß gilt [mm]g'=f\circ[/mm] g
> [mm]f^{-1}.[/mm]
> Hallo Zusammen,
>
> ich brauche dringend hilfe,
>  
> wie soll ich hier bei so vielen Einzelheiten einen klaren
> blick bekommen.
>  Ganz in ernst, verstehe nicht von dieser
> Aufgabenstellung.

Hallo,

einen klareren Blick bekommt man in der Regel, wenn man sich als erstes mal die Zutaten der Aufgaben klarmacht. Hast Du das schon getan? (Falls ja: poste so etwas mit. Das wären auch die erwünschten eigenen Lösungsansätze

Mir geht es bei dieser Aufgabe so, daß ich zwar weiß, was ein R-Modul und eine R-lineare Abbildung ist, auch Modulisomorphismus ist mir bekannt, aber beim Rest gibt es für mich Erklärungsbedarf - und da ich denke, daß es  Dich voranbringt, wenn Du die die Dinge mal aufzuschreibst, frage ich lieber Dich als mein Internet (ein Buch zum Thema hab' ich nicht):

Was ist denn mit R(X) gemeint? Polynome üver R, also R[X]?

Was verbirgt sich hinter (M,g)?

Da steht, daß (M,g) ein R(X)-Modul ist. Wie werden denn die Elemente von von (M,g) mit denen von R(X) verknüpft?

Das wären aus meiner Sicht die Dinge, die man als allererstes wissen müßte.

Gruß v. Angela



Bezug
                
Bezug
R-Moduln: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:18 Di 17.06.2008
Autor: Pawelos

Hi ich mach gerade die selbe Aufgabe, und weis auch nicht weiter!

> Was ist denn mit R(X) gemeint? Polynome üver R, also R[X]?

JA.

> Was verbirgt sich hinter (M,g)?

> Da steht, daß (M,g) ein R(X)-Modul ist. Wie werden denn die
> Elemente von von (M,g) mit denen von R(X) verknüpft?

p = [mm] \summe_{i=0}^{n} a_{i}x^{i} \in [/mm] R[x], m [mm] \in [/mm] M

p*m = [mm] (\summe_{i=0}^{n} a_{i}x^{i})*m [/mm] := [mm] \summe_{i=0}^{n} a_{i}g^{i}(m) [/mm]

kurz
xm := g(m)

und (M,g) bezeichnet das R[x]-Modul mit der obigen Definition der "Skalamultiplikation" R[x] x M [mm] \to [/mm] M

zur Aufgabe:

Sei (M,g) [mm] \cong [/mm] (M',g')
dann ist [mm] \phi [/mm] : M [mm] \to [/mm] (M,g) ; m [mm] \mapsto [/mm] xm = g(m) ein Isomorphismus
[mm] \Rightarrow [/mm]  M [mm] \cong [/mm] (M,g)
[mm] \Rightarrow [/mm] M [mm] \cong [/mm] (M,g) [mm] \cong [/mm] (M',g') [mm] \cong [/mm] M'
[mm] \Rightarrow [/mm] f: M [mm] \to [/mm] M' existiert .
aber warum gilt g' = f [mm] \circ [/mm] g [mm] \circ f^{-1} [/mm]
wenn der rest überhaupt richtig ist!

tja für die Rückrichtung hab ich überhaupt keine Idee

Bezug
                        
Bezug
R-Moduln: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Do 19.06.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]