www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Quotientenregel
Quotientenregel < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quotientenregel: Korrektur
Status: (Frage) beantwortet Status 
Datum: 20:32 So 08.11.2009
Autor: omarco

Aufgabe
f'(x) = [mm] \bruch{x}{\wurzel{4-x^{2}}} [/mm]

u(x) = x    v(x)= [mm] \wurzel{4-x^{2}} [/mm]  

f''(x) = [mm] \bruch{1*(4-x^{2})^{0.5}-x*0,5*(4-x^{2})^{-0.5}}{4-x^{2}} [/mm]

= [mm] 1^{0.5}-x*0,5*1^{-0.5} [/mm]                  



Ich habe jetzt die Aufgabe so umgefomrt. Wo aber ist der Fehler ? Ich habe beim letzten Schritt [mm] 4-x^{2} [/mm] ausgeklammert und dann gekürzt . Darf man das so ?

        
Bezug
Quotientenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 20:40 So 08.11.2009
Autor: MathePower

Hallo omarco,

> f'(x) = [mm]\bruch{x}{\wurzel{4-x^{2}}}[/mm]
>
> u(x) = x    v(x)= [mm]\wurzel{4-x^{2}}[/mm]  
>
> f''(x) =
> [mm]\bruch{1*(4-x^{2})^{0.5}-x*0,5*(4-x^{2})^{-0.5}}{4-x^{2}}[/mm]
>  
> = [mm]1^{0.5}-x*0,5*1^{-0.5}[/mm]                  
>
>
>
> Ich habe jetzt die Aufgabe so umgefomrt. Wo aber ist der
> Fehler ? Ich habe beim letzten Schritt [mm]4-x^{2}[/mm]


Nun, hier ist die innere Ableitung von [mm]\wurzel{4-x^{2}}[/mm] verlorengegangen:

[mm]f''(x) = \bruch{1*(4-x^{2})^{0.5}-x*0,5*(4-x^{2})^{-0.5}*\red{\left(4-x^{2}\right)'}}{4-x^{2}}[/mm]  


> ausgeklammert und dann gekürzt . Darf man das so ?  


Gruss
MathePower

Bezug
                
Bezug
Quotientenregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:04 So 08.11.2009
Autor: omarco


> Hallo omarco,
>  
> > f'(x) = [mm]\bruch{x}{\wurzel{4-x^{2}}}[/mm]
> >
> > u(x) = x    v(x)= [mm]\wurzel{4-x^{2}}[/mm]  
> >
> > f''(x) =
> > [mm]\bruch{1*(4-x^{2})^{0.5}-x*0,5*(4-x^{2})^{-0.5}}{4-x^{2}}[/mm]
>  >  
> > = [mm]1^{0.5}-x*0,5*1^{-0.5}[/mm]                  
> >
> >
> >
> > Ich habe jetzt die Aufgabe so umgefomrt. Wo aber ist der
> > Fehler ? Ich habe beim letzten Schritt [mm]4-x^{2}[/mm]
>  
>
> Nun, hier ist die innere Ableitung von [mm]\wurzel{4-x^{2}}[/mm]
> verlorengegangen:
>  
> [mm]f''(x) = \bruch{1*(4-x^{2})^{0.5}-x*0,5*(4-x^{2})^{-0.5}*\red{\left(4-x^{2}\right)'}}{4-x^{2}}[/mm]
>  
>
>
> > ausgeklammert und dann gekürzt . Darf man das so ?  
>
>
> Gruss
>  MathePower

Die Quotientenregel geht doch so : [mm] \bruch{u'*v-u*v'}{v(x)^{2}} [/mm]

und v' ist doch das ??? [mm] 0,5*(4-x^{2})^{-0.5} [/mm]



Bezug
                        
Bezug
Quotientenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:23 So 08.11.2009
Autor: XPatrickX

Hallo!

>
> Die Quotientenregel geht doch so :
> [mm]\bruch{u'*v-u*v'}{v(x)^{2}}[/mm]
>  
> und v' ist doch das ??? [mm]0,5*(4-x^{2})^{-0.5}[/mm]
>
>  

Nein, wie gesagt musst du um v' zu bestimmen die Kettenregel anwenden.

[mm] $$\left(\wurzel{h(x)}\right)'=\frac{1}{2\wurzel{h(x)}}\red{\cdot{} h'(x)}$$ [/mm]

Gruß Patrick

Bezug
                                
Bezug
Quotientenregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:39 So 08.11.2009
Autor: omarco


> Hallo!
>  
> >
> > Die Quotientenregel geht doch so :
> > [mm]\bruch{u'*v-u*v'}{v(x)^{2}}[/mm]
>  >  
> > und v' ist doch das ??? [mm]0,5*(4-x^{2})^{-0.5}[/mm]
> >
> >  

>
> Nein, wie gesagt musst du um v' zu bestimmen die
> Kettenregel anwenden.
>
> [mm]\left(\wurzel{h(x)}\right)'=\frac{1}{2\wurzel{h(x)}}\red{\cdot{} h'(x)}[/mm]
>  
> Gruß Patrick

Ok danke habe es jetzt verstanden.

[mm] \bruch{1\cdot{}(4-x^{2})^{0.5}-x\cdot{}0,5\cdot{}(4-x^{2})^{-0.5}*(-2x)}{4-x^{2}} [/mm]

so müsste es jetzt richtig sein und wie kann ich es am besten vereinfachen ?

Bezug
                                        
Bezug
Quotientenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:45 So 08.11.2009
Autor: leduart

Hallo
erstmal mit [mm] (4-x^{2})^{0.5} [/mm] erweitern.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]