www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Quotientenregel
Quotientenregel < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quotientenregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:53 Mi 03.12.2008
Autor: dicentra

Aufgabe
(tan x)' = [mm] \left(\bruch{sin x}{cos x}\right)' [/mm]

das ist ein beispiel aus einem buch.

die ableitung an sich verstehe ich:

= [mm] \bruch{cos x \* cos x - sin x \* (-sin x)}{cos^2 x} [/mm]

doch wie kann ich mir den nächsten schritt erklären?

= 1+ [mm] \left(\bruch{sin x}{cos x}\right)^2 [/mm]

und von dort zum folgenden, verstehe ich auch nicht :-(

[mm] =\bruch{1}{cos^2 x} [/mm]



        
Bezug
Quotientenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:05 Mi 03.12.2008
Autor: abakus


> (tan x)' = [mm]\left(\bruch{sin x}{cos x}\right)'[/mm]
>  das ist ein
> beispiel aus einem buch.
>  
> die ableitung an sich verstehe ich:
>  
> = [mm]\bruch{cos x \* cos x - sin x \* (-sin x)}{cos^2 x}[/mm]

Hallo,
es gilt  [mm]\bruch{cos x \* cos x - sin x \* (-sin x)}{cos^2 x}= \bruch{cos x \* cos x}{cos^2x} - \bruch{sin x \* (-sin x)}{cos^2 x}[/mm], und der erste Bruck kürzt sich zu 1.


>  
> doch wie kann ich mir den nächsten schritt erklären?
>  
> = 1+ [mm]\left(\bruch{sin x}{cos x}\right)^2[/mm]

>  
> und von dort zum folgenden, verstehe ich auch nicht :-(
>  
> [mm]=\bruch{1}{cos^2 x}[/mm]

Der Zwischenschritt über 1+ [mm]\left(\bruch{sin x}{cos x}\right)^2[/mm] ist auch unnötig. In
[mm]\bruch{cos x \* cos x - sin x \* (-sin x)}{cos^2 x}[/mm]
kann man die doppelten Minuszeichen im Zähler "bereinigen"  und erhält daraus
[mm]\bruch{cos^2x+ sin^2 x}{cos^2 x}[/mm] (und [mm] cos^2 [/mm] x + [mm] sin^2 [/mm] x ist bekanntlich 1).
Viele Grüße
Abakus

>  
>  


Bezug
                
Bezug
Quotientenregel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:23 Mi 03.12.2008
Autor: dicentra

recht schönen dank abakus :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]