www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Quotientenraum
Quotientenraum < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quotientenraum: quotientenraum berechnen
Status: (Frage) beantwortet Status 
Datum: 23:04 Mi 26.11.2008
Autor: studi08

Aufgabe
Sei [mm] V=\IR^4 [/mm] und U= [mm] \vektor{\alpha \\ \beta \\ 0 \\ 0} \alpha,\beta \in\IR [/mm]
Zeige [mm] V/U=\vektor{\gamma \\ \delta \\ c \\ d}+U:\gamma,\delta\in\IR [/mm]

Ich sehe momentan nicht wie ich diese Aufgabe angehen soll.Also ich weiss folgendes von Quotientenräumen:
[mm] \pi \to [/mm] a+U
[mm] \pi(a)= [/mm] a+U
und der [mm] Kern\pi=U [/mm]
Was ist nun der erste Schritt?

Besten Dank!

        
Bezug
Quotientenraum: Antwort
Status: (Antwort) fertig Status 
Datum: 02:24 Do 27.11.2008
Autor: Marcel

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo,

> Sei $ V=R^4 $ und U= $ \vektor{\alpha \\ \beta \\ 0 \\ 0} \alpha,\beta $
> Element von R

ich mag' diese (allerdings durchaus gängige) Notation nicht. Es läßt sich nämlich sauber schreiben:
$$ U=\left\{\vektor{\alpha \\ \beta \\ 0 \\ 0};\; \alpha,\beta \in \IR\right\}\,. $$

>  Zeige V/U = $ \vektor{\gamma \\ \delta \\ c \\ d} $ + U :
> $ \gamma,\delta $ Element von R

Dort sollte wohl eher

$ \vektor{c \\ d\\ \gamma \\ \delta} $ + U : $ \gamma,\delta $ Element von R

stehen?!

>  Ich sehe momentan nicht wie ich diese Aufgabe angehen
> soll.Also ich weiss folgendes von Quotientenräumen:
> $ \red{\pi \to} $ a+U

$$ \blue{\pi: V \to V/U;\;\;a \mapsto a+U} $$

>  $ \pi(a)= $ a+U
>  und der $ Kern\pi=U $
>  Was ist nun der erste Schritt?

Ich weiß leider nicht, wie ihr Quotientenvektorräume definiert habt. Eine mögliche Definition ist jedenfalls $V/U=\{a+U;\;a \in V\}\,.$

Also:
Dann hättest Du oben, weil dann hier $V/U=\{x^T+U;  x^T=(x_1,x_2,x_3,x_4)^T \in \IR^4\}$ ist, zu zeigen:
Für beliebige, aber feste $c,d \in \IR$ gilt:
$$\underbrace{\left\{x+U;  \;x=\vektor{x_1\\x_2\\x_3\\x_4}\in \IR^4\right\}}_{=V/U}= \blue{\left\{\vektor{c \\ d\\ \gamma \\ \delta} +U;\;\gamma, \delta \in \IR\right\}}\,. $$

Zu "$\subset$":
Sei $W \in V/U\,.$ Dann gilt $W=\vektor{x_1\\x_2\\x_3\\x_4}+U$ für ein $\vektor{x_1\\x_2\\x_3\\x_4} \in \IR^4\,.$ Also folgt

$$W=\vektor{c\\d\\x_3\\x_4}+\underbrace{\;\;\underbrace{\vektor{x_1-c\\x_2-d\\0\\0}}_{\in U}+U}_{\substack{=U;\\\\\text{denn beachte: }u+U=U \text{ für } u \in U}}\;\;}=\vektor{c\\d\\x_3\\x_4}+U\,,$$

und damit gilt $W \in \blue{\{...\}}$ (mit $\gamma:=x_3$ und $\delta:=x_4$).

$\text{(}$Man beachte (und erst, als ich mir das selbst wieder klargemacht habe, habe ich erkannt, was ich da vorher für einen Unsinn stehen hatte!), dass das Element $W \in V/U$ selbst eine Teilmenge von $\,V\,$ ist. Es ist nämlich $W \subset V\,,$ da für festes $x \in V$ gilt:
$$x+U=\{x+u;\;u \in U\} \subset V\,.\text{)}$$

Zu "$\supset$":
Das ist trivial (wegen $\vektor{c\\d\\\gamma\\\delta} \in \IR^4$).

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]