www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Quotientenkriterium
Quotientenkriterium < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quotientenkriterium: Konvergenz
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:05 Fr 23.01.2009
Autor: bastid

Aufgabe
Untersuchen Sie die zu  cn= (n!)² / (2n)! gehörige Reihe auf Konvergenz. Benutzen Sie dazu das Wurzel oder Quotientenkriterium.

Ich habe für die Lösung der Aufgabe das Quotientenkriterium verwendet.
Als Zwischenergebnis kam heraus n²(1+ 2/n + 1/n²) / n²(2/n + 1/n²). Bildet man jetzt den Limes kommt als Lösung heraus: 1/0.
Was bedeutet diese Lösung für die Konvergenz der Reihe?
Vielen Dank für eure Hilfe

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Quotientenkriterium: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:22 Fr 23.01.2009
Autor: angela.h.b.

Hallo,

[willkommenmr].

Rechne bitte mal vor, was Du getan hast, sonst kann man schlecht helfen.

Gruß v. Angela

Bezug
                
Bezug
Quotientenkriterium: Rechnung
Status: (Frage) beantwortet Status 
Datum: 19:53 Fr 23.01.2009
Autor: bastid

cn=(n!)²/(2n)!  cn+1=((n+1)!)²/(2n+1)!

qn=cn+1/cn

=((n+1)!)² * (2n)!  /  (2n+1)! *(n!)²

=(n!)² * (n+1)² * (2n)! /  (2n)! * (2n+1) *(n!)²

=(n+1)² / (2n+1)

=(n²+ 2n +1) / ( 2n + 1)

= n²* (1 + 2/n + 1/n²) / n² * (2/n +1/n²)

lim qn = 1/0





Bezug
                        
Bezug
Quotientenkriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 22:19 Fr 23.01.2009
Autor: angela.h.b.


> cn=(n!)²/(2n)!  [mm] cn+1=((n+1)!)²/(2\red{(}n+1\red{)})! [/mm]

Hallo,

Du hast die rot eingefügte Klammer vergessen, dadurch verändert sich dann einiges.

Rechne es jetzt nochmal durch.

Gruß v. Angela

>  
> qn=cn+1/cn
>  
> =((n+1)!)² * (2n)!  /  (2n+1)! *(n!)²
>  
> =(n!)² * (n+1)² * (2n)! /  (2n)! * (2n+1) *(n!)²
>  
> =(n+1)² / (2n+1)
>  
> =(n²+ 2n +1) / ( 2n + 1)
>  
> = n²* (1 + 2/n + 1/n²) / n² * (2/n +1/n²)
>  
> lim qn = 1/0
>  
>
>
>  


Bezug
                                
Bezug
Quotientenkriterium: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:32 Fr 23.01.2009
Autor: bastid

Oh ja...vielen Dank für die Hilfe:)

Bezug
                                        
Bezug
Quotientenkriterium: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 12:24 Sa 24.01.2009
Autor: bastid

Also, ich habe das jetzt nochmal durchgerechnet und komme trotzdem auf das Ergebnis 1/0.

Meine Rechnung:

cn=(n!)²/(2n)!                      cn+1=((n+1)!)² / (2*(n+1))!

qn= cn+1/ cn

=( ((n+1)!)² * (2n)! )     /    ( (2*(n+1))! * (n!)²  )

=( (n!)² * (n+1)² * (2n)! )     /   ( (2n)! * (2n+2) * (n!)² )

=( (n+1)² )  / ( (2n+2)  )

=( n² + 2n + 1)  /  (2n+2)

= n² * (1+  2/n + 1/n²)   /   n² *  ( 2/n + 2/n²)

lim qn

= 1/0


Bezug
                                                
Bezug
Quotientenkriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 12:33 Sa 24.01.2009
Autor: angela.h.b.

Hallo,

Du kannst mit dem Formeleditor (Eingabehilfen unterhalb des Eingabefensters) richtige Brüche schreiben. Man kann das dann entschieden besser lesen und kürzen.

Du hast folgendes nicht beachtet:

(2(n+1))!=(2n+2)!=(2n)!(2n+1)(2n+2).

Gruß v. Angela

Bezug
                                                        
Bezug
Quotientenkriterium: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:28 Sa 24.01.2009
Autor: bastid

Vielen Dank für die schnelle Hilfe. Jetzt komme ich auf das richtige Ergebnis:)

Grüße

Sebastian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]