Quotientenkörper < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
In meinem Skript steht: [mm] \IQ [/mm] ( [mm] \wurzel{n} [/mm] ) = { a+b [mm] \wurzel{n} [/mm] | a,b [mm] \in \IQ [/mm] } ist Quotientenkörper von [mm] \IZ [/mm] [ [mm] \wurzel{n} [/mm] ]. Aber ist nicht an sich [mm] \IZ [/mm] ( [mm] \wurzel{n} [/mm] ) der Quotientenkörper von [mm] \IZ [/mm] [ [mm] \wurzel{n} [/mm] ]. Die Elemente in [mm] \IZ [/mm] ( [mm] \wurzel{n} [/mm] ) haben die Form [mm] \bruch{a+b\wurzel{n}}{c+d\wurzel{n}}, [/mm] a,b,c,d [mm] \in \IZ [/mm] und die Elemente in [mm] \IQ [/mm] ( [mm] \wurzel{n} [/mm] ) haben die Form [mm] \bruch{a}{b}+\bruch{c}{d}\wurzel{n}, [/mm] a,b,c,d [mm] \in \IZ. [/mm] Kann man das irgendwie ineinander überführen und so zeigen, dass sie beide Quotientenkröper sind?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:03 So 11.10.2009 | Autor: | felixf |
Hallo Nora!
> In meinem Skript steht: [mm]\IQ[/mm] ( [mm]\wurzel{n}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
) = { a+b
> [mm]\wurzel{n}[/mm] | a,b [mm]\in \IQ[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
} ist Quotientenkörper von [mm]\IZ[/mm] [
> [mm]\wurzel{n}[/mm] ].
Ja.
> Aber ist nicht an sich [mm]\IZ[/mm] ( [mm]\wurzel{n}[/mm] ) der
Was soll das sein? Das ist nicht definiert, da [mm] $\IZ$ [/mm] kein Koerper ist.
> Quotientenkörper von [mm]\IZ[/mm] [ [mm]\wurzel{n}[/mm] ]. Die Elemente in
> [mm]\IZ[/mm] ( [mm]\wurzel{n}[/mm] ) haben die Form
> [mm]\bruch{a+b\wurzel{n}}{c+d\wurzel{n}},[/mm] a,b,c,d [mm]\in \IZ[/mm] und
> die Elemente in [mm]\IQ[/mm] ( [mm]\wurzel{n}[/mm] ) haben die Form
> [mm]\bruch{a}{b}+\bruch{c}{d}\wurzel{n},[/mm] a,b,c,d [mm]\in \IZ.[/mm] Kann
> man das irgendwie ineinander überführen und so zeigen,
> dass sie beide Quotientenkröper sind?
Nun, erweiter doch mal [mm] $\frac{a + b \sqrt{n}}{c + d \sqrt{n}}$ [/mm] mit $c - d [mm] \sqrt{n}$.
[/mm]
LG Felix
|
|
|
|
|
Da kommt doch dann irgendwelches Durcheinander raus:
[mm] \bruch{a+b\wurzel{n}}{c+d\wurzel{n}}*\bruch{c-d\wurzel{n}}{c-d\wurzel{n}}=\bruch{ac-ad\wurzel{n}+cb\wurzel{n}-nbd}{c^{2}-nd^{2}}.
[/mm]
Meintest du das so? Das brngt mir doch aber gar nichts, oder?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:35 So 11.10.2009 | Autor: | felixf |
Hallo!
> Da kommt doch dann irgendwelches Durcheinander raus:
>
> [mm]\bruch{a+b\wurzel{n}}{c+d\wurzel{n}}*\bruch{c-d\wurzel{n}}{c-d\wurzel{n}}=\bruch{ac-ad\wurzel{n}+cb\wurzel{n}-nbd}{c^{2}-nd^{2}}.[/mm]
> Meintest du das so? Das brngt mir doch aber gar nichts,
> oder?
Na, fassen wir das doch mal zusammen. Unten steht [mm] $c^2 [/mm] - n [mm] d^2$; [/mm] dies ist nicht 0 (warum?) und eine ganze Zahl, sagen wir $z$.
Oben steht $(a c - n d b) + (c b - a d) [mm] \sqrt{n}$. [/mm] Das ist von der Form $x + y [mm] \sqrt{n}$ [/mm] mit $x, y [mm] \in \IZ$.
[/mm]
Insgesamt hast du also [mm] $\frac{x}{z} [/mm] + [mm] \frac{y}{z} \sqrt{n} \in \IQ[\sqrt{n}]$.
[/mm]
LG Felix
|
|
|
|