Quotientengruppen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:28 So 27.12.2009 | Autor: | moerni |
Hallo. Ich habe eine Verständnisfrage: In unserem Skript steht folgendes:
G eine Gruppe, N Normalteiler von G. Die Abbildung [mm] \pi: [/mm] G [mm] \to [/mm] G/N, g [mm] \mapsto [/mm] gN ist ein surjektiver Gruppenhomomorphismus mit [mm] ker(\pi)=N.
[/mm]
Ich habe zunächst nachgeprüft, dass es ein Gruppenhomomorphismus ist:
[mm] \forall g_1, g_2 \in [/mm] G: [mm] \pi(g_1,g_2) [/mm] = $$g_1g_2N = g_1Ng_2N$$ = [mm] \pi(g_1)\pi(g_2) [/mm] ok.
Das die Abbildung surjektiv ist, finde ich, sieht man.
[mm] ker(\pi)=\{g \in G: \pi(g) = neutralelement\}. [/mm] Hier wäre das Neutralelement ja eN, oder?
Was mir noch nicht klar ist:
1. g [mm] \in ker(\pi) \Leftrightarrow [/mm] g [mm] \in [/mm] N. Warum? Ist das wie bei Idealen, wo das Element dann "verschluckt wird" also z.B. ist A ein Ring, I ein Ideal, a [mm] \in [/mm] I, dann ist a + I = 0 + I = I?
2. Als Bemerkung steht noch: Ist H nicht normal, dann gibt es keine Gruppenstruktur G/H derart, dass [mm] \pi: [/mm] G [mm] \to [/mm] G/H, [mm] \pi(g)=gH [/mm] ein Gruppenhomomorphismus ist. Weshalb ist das so? das verstehe ich leider nicht.
Über eine Antwort wäre ich sehr dankbar,
grüße, moerni
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:22 Mo 28.12.2009 | Autor: | felixf |
Hallo!
> Hallo. Ich habe eine Verständnisfrage: In unserem Skript
> steht folgendes:
>
> G eine Gruppe, N Normalteiler von G. Die Abbildung [mm]\pi:[/mm] G
> [mm]\to[/mm] G/N, g [mm]\mapsto[/mm] gN ist ein surjektiver
> Gruppenhomomorphismus mit [mm]ker(\pi)=N.[/mm]
>
> Ich habe zunächst nachgeprüft, dass es ein
> Gruppenhomomorphismus ist:
> [mm]\forall g_1, g_2 \in[/mm] G: [mm]\pi(g_1,g_2)[/mm] = [mm]g_1g_2N = g_1Ng_2N[/mm]
> = [mm]\pi(g_1)\pi(g_2)[/mm] ok.
> Das die Abbildung surjektiv ist, finde ich, sieht man.
> [mm]ker(\pi)=\{g \in G: \pi(g) = neutralelement\}.[/mm] Hier wäre
> das Neutralelement ja eN, oder?
Ja.
> Was mir noch nicht klar ist:
> 1. g [mm]\in ker(\pi) \Leftrightarrow[/mm] g [mm]\in[/mm] N. Warum? Ist das
> wie bei Idealen, wo das Element dann "verschluckt wird"
Das liegt an: $g N = e N [mm] \Leftrightarrow [/mm] g [mm] e^{-1} [/mm] N = N [mm] \Leftrightarrow [/mm] g N = N [mm] \Leftrightarrow [/mm] g [mm] \in [/mm] N$. Versuche das zu beweisen.
> also z.B. ist A ein Ring, I ein Ideal, a [mm]\in[/mm] I, dann ist a
> + I = 0 + I = I?
Ja.
> 2. Als Bemerkung steht noch: Ist H nicht normal, dann gibt
> es keine Gruppenstruktur G/H derart, dass [mm]\pi:[/mm] G [mm]\to[/mm] G/H,
> [mm]\pi(g)=gH[/mm] ein Gruppenhomomorphismus ist. Weshalb ist das
> so? das verstehe ich leider nicht.
Weil die Multiplikation dann durch $(g N) (h N) = (g h) N$ definiert sein muesste, sie aber nicht wohldefiniert ist. Die Wohldefiniertheit ist gerade aeqiuvalent dazu, dass $N$ ein Normalteiler ist.
Versuch es doch mal zu beweisen. Das hilft oft weiter.
LG Felix
|
|
|
|