www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Quotient einer konv. Folge
Quotient einer konv. Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quotient einer konv. Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:22 Sa 08.06.2013
Autor: Die_Suedkurve

Aufgabe
Behauptung:

Wenn [mm] (a_n) \subset \IC [/mm] eine konvergente Folge ist, mit [mm] a_n \to [/mm] L für n [mm] \to \infty, [/mm] dann gilt [mm] \bruch{a_{n+1}}{a_n} \to [/mm] 1 für n [mm] \to \infty [/mm]

Hallo zusammen,

ich habe die Behauptung selber aufgestellt, und bin mir unsicher, ob diese stimmt.
Wenn L [mm] \not= [/mm] 0 ist das klar, aber was passiert wenn L = 0 ist?

Grüsse
Alex

        
Bezug
Quotient einer konv. Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 12:40 Sa 08.06.2013
Autor: Gonozal_IX

Hiho,

>  Wenn L [mm]\not=[/mm] 0 ist das klar, aber was passiert wenn L = 0 ist?

hast dir denn schon mal Beispiele überlegt?
Mir fallen da sofort einige ein....

MFG,
Gono.

Bezug
                
Bezug
Quotient einer konv. Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:06 Sa 08.06.2013
Autor: Die_Suedkurve

Ja, okay, im Fall L = 0 funktioniert das nicht.

Gegenbeispiel ist [mm] a_n [/mm] := [mm] \bruch{1}{e^n}. [/mm]

Dann gilt:

[mm] \bruch{a_{n+1}}{a_n} [/mm] = [mm] \bruch{\bruch{1}{e^{n+1}}}{\bruch{1}{e^n}} [/mm] = [mm] \bruch{e^n}{e^{n+1}} [/mm] = [mm] \bruch{1}{e} \not= [/mm] 1

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]