www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Quasikonvexität
Quasikonvexität < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quasikonvexität: Allgemeine Frage
Status: (Frage) beantwortet Status 
Datum: 07:27 Mo 27.04.2015
Autor: Britta82

Hi,

ich habe eine Frage zur Quasikonvexität: Vererbt die sich? Sind also Vereinigungen quasikonvexer Funktionen auch quasikonvex?

Besten Dank und viele Grüße,
Britta

        
Bezug
Quasikonvexität: Antwort
Status: (Antwort) fertig Status 
Datum: 07:37 Mo 27.04.2015
Autor: fred97


> Hi,
>  
> ich habe eine Frage zur Quasikonvexität: Vererbt die sich?
> Sind also Vereinigungen quasikonvexer Funktionen auch
> quasikonvex?

Was verstehst Du denn unter der Verinigung von Funktionen ???

FRED

>  
> Besten Dank und viele Grüße,
>  Britta


Bezug
                
Bezug
Quasikonvexität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:39 Mo 27.04.2015
Autor: Britta82

Ich meine Verkettung, oder die Summe, jede Art zwei Funktionen miteinander in Verbindung zu bringen.

Ich weiß, dass die Summe konvexer Funktionen wieder konvex ist, aber bspw. für die Log-Funktion habe ich nichtmal Konvexität, aber quasikonvexität. Die Frage ist also, wenn ich den Logarithmus mit einer anderen (quasi)konvexen Funktion verbinde, erhalte ich mir dann die Quasikonvexität?

Besten Dank
Britta

Bezug
                        
Bezug
Quasikonvexität: Antwort
Status: (Antwort) fertig Status 
Datum: 08:54 Mo 27.04.2015
Autor: fred97


> Ich meine Verkettung, oder die Summe, jede Art zwei
> Funktionen miteinander in Verbindung zu bringen.
>  
> Ich weiß, dass die Summe konvexer Funktionen wieder konvex
> ist, aber bspw. für die Log-Funktion habe ich nichtmal
> Konvexität, aber quasikonvexität. Die Frage ist also,
> wenn ich den Logarithmus mit einer anderen (quasi)konvexen
> Funktion verbinde, erhalte ich mir dann die
> Quasikonvexität?
>  
> Besten Dank
>  Britta


Ist K eine konvexe Teilmenge eines reellen Vektorraumes und $f:K [mm] \to \IR$ [/mm] eine Funktion, so heißt f quasikonvex, wenn für jedes a [mm] \in \IR [/mm] die Menge


      [mm] Q_{a}(f):=\{x \in K:f(x)\le a\} [/mm]

konvex ist.

Ist nun $f(K) [mm] \subseteq [/mm] (0, [mm] \infty)$, [/mm] so ist [mm] $g(x):=\ln [/mm] (fx))$ auf K wohldefiniert. Ist dann a [mm] \in \IR, [/mm] so rechne nach:


      [mm] Q_{a}(g)= Q_{e^a}(f). [/mm]

Ist f also quasikonvex, was folgt dann über g ?

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]