www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Prädikatenlogik" - Quantorenelimination
Quantorenelimination < Prädikatenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Prädikatenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quantorenelimination: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:56 Mo 09.05.2016
Autor: impliziteFunktion

Aufgabe
Sei $T$ die Theorie von [mm] $\mathcal{M}=(\mathbb{R}, [/mm] <)$

Zeige: $T$ hat Quantorenelimination.


Hallo,

ich habe eine Frage zur Quantorenelimination.

Zeigen muss ich ja, dass zu jeder Formel [mm] $\varphi$ [/mm] der zu $T$ gehörigen Sprache eine quantorenfreie Formel [mm] $\psi$ [/mm] existiert, so dass [mm] $T\models\forall v_0\dotso\forall v_n(\varphi\leftrightarrow \psi)$, wobei $v_0,...,v_n$ sämtliche freie Variablen durchläuft. Dabei genügt es folgendes zu zeigen: Sei $\varphi$ eine Formel, der Gestalt $\exists v_0(\varphi_0\wedge\dotso\varphi_k)$, wobei jedes $\varphi_i$ atomar oder Negation einer atomaren Formel ist. Dann existiert eine Formel $\mathcal{M}\models\forall v_0\dotso\forall v_n(\varphi\wedge\psi)$. Doch wie genau ist nun die vorgehensweise? Zu erst betrachte ich die Terme, dann eliminiere ich die "$\neg$". Und zum Schluss betrachte ich Formeln der Form: $\exists v_m((\psi_0\wedge\psi_1)\wedge\varphi_1) um zu zeigen, dass die ursprüngliche Formel $\exists v_m(\varphi_0\wedge\dotso\wedge\varphi_i)$ über $\mathcal{M}$ äquivalent zu einer Disjunktion von Formeln der Gestalt $\exists v_m(\psi_0\wedge\dotso\wedge\psi_l)$ ist, wobei jedes $\psi_i$ atomar ist. Wäre die Vorgehensweise so erstmal korrekt? Vielen Dank im voraus. [/mm]

        
Bezug
Quantorenelimination: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Mi 11.05.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Prädikatenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]