www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Quadrik
Quadrik < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadrik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:15 Fr 16.05.2008
Autor: Kroni

Aufgabe
Sei A der lin. Unterraum [mm] \{x|x_1+x_2+x_3+x_4=0\} [/mm]
Beschreiben Sie die Quadrik [mm] $Q_A=\{x\in U | x_1^2+x_2^2+x_3^2+x_4^2=1\}$ [/mm] in A durch Koordinaten in A.

Hi,

hierzu habe ich eine Frage.

Ich kann die obige Quadrik ja in "normalen" Koordianten so schreiben:

[mm] $\vec{x}^t\pmat{1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 }\vec{x}$ [/mm]

Wenn ich in T aber die Basisvektoren meines Unterraums A darstelle, dann habe ich ein Problem:

Wenn ich die Dimension von A bestimme, dann habe ich nur die drei Basisvektoren:

[mm] $\pmat{-1 & 1 & 0 & 0}$, $\pmat{-1 & 0 & 1 & 0}$ [/mm] , [mm] $\pmat{-1 & 0 & 0 & 1}$ [/mm]

Wäre es jetzt richtig, diese drei Vektoren (als Spalten) in T zu schreiben, dann [mm] $T^T [/mm] A T$ zu berechnen, und dann habe ich die Quadrik in Koord. von A?

Beste Grüße,

Kroni

        
Bezug
Quadrik: Antwort
Status: (Antwort) fertig Status 
Datum: 20:31 Fr 16.05.2008
Autor: MathePower

Hall Kroni,

> Sei A der lin. Unterraum [mm]\{x|x_1+x_2+x_3+x_4=0\}[/mm]
>  Beschreiben Sie die Quadrik [mm]Q_A=\{x\in U | x_1^2+x_2^2+x_3^2+x_4^2=1\}[/mm]
> in A durch Koordinaten in A.
>  Hi,
>  
> hierzu habe ich eine Frage.
>  
> Ich kann die obige Quadrik ja in "normalen" Koordianten so
> schreiben:
>  
> [mm]\vec{x}^t\pmat{1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 }\vec{x}[/mm]

Das muss doch so lauten:

[mm]\vec{x}^t\pmat{1 & 0 & 0 & 0 \\ 0 & \blue{+}1 & 0 & 0 \\ 0 & 0 & \blue{+}1 & 0 \\ 0 & 0 & 0 & \blue{+}1 }\vec{x}[/mm]

>  
> Wenn ich in T aber die Basisvektoren meines Unterraums A
> darstelle, dann habe ich ein Problem:
>
> Wenn ich die Dimension von A bestimme, dann habe ich nur
> die drei Basisvektoren:
>  
> [mm]\pmat{-1 & 1 & 0 & 0}[/mm], [mm]\pmat{-1 & 0 & 1 & 0}[/mm] , [mm]\pmat{-1 & 0 & 0 & 1}[/mm]
>  
> Wäre es jetzt richtig, diese drei Vektoren (als Spalten) in
> T zu schreiben, dann [mm]T^T A T[/mm] zu berechnen, und dann habe
> ich die Quadrik in Koord. von A?

Ja, das ist richtig.

>  
> Beste Grüße,
>  
> Kroni

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]