www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Quadratzahlen mit Legendre-Sym
Quadratzahlen mit Legendre-Sym < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratzahlen mit Legendre-Sym: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:04 So 10.06.2007
Autor: determinante

Aufgabe
Man bestimme alle [mm] a\in\IN, [/mm] so dass [mm] m_{k}(a):= [/mm] a+29k [mm] (k\in\IZ) [/mm] Quadratzahlen bzw. Biquadratzahlen bilden.

Es muss, laut Dozent, irgendetwas mit dem Legendre-Symbol zu tun haben. Damit kann man doch aber nur quadratische Reste, keine Quadratzahlen berechnen, oder? Mir fehlt der Zusammenhang...
Außerdem verstehe ich nicht, warum ich nur die a's angeben soll, ob wohl die Quadratzahlen doch auch gleichzeitig von den k's abhängig sind.
Zur Information: Biquadratzahlen sind Zahlen der Form [mm] (z^{n})^{n}. [/mm]

Hoffe auf eure Hilfe! Vielen Dank im Voraus!

        
Bezug
Quadratzahlen mit Legendre-Sym: Antwort
Status: (Antwort) fertig Status 
Datum: 09:33 Di 12.06.2007
Autor: felixf

Hallo!

> Man bestimme alle [mm]a\in\IN,[/mm] so dass [mm]m_{k}(a):=[/mm] a+29k
> [mm](k\in\IZ)[/mm] Quadratzahlen bzw. Biquadratzahlen bilden.

Ist damit gemeint, dass es irgendein $k [mm] \in \IZ$ [/mm] gibt so, dass $a + 29 k$ ein Quadrat bzw. ein Biquadrat ist? Ich gehe mal davon aus...

>  Es muss, laut Dozent, irgendetwas mit dem Legendre-Symbol
> zu tun haben. Damit kann man doch aber nur quadratische
> Reste, keine Quadratzahlen berechnen, oder? Mir fehlt der
> Zusammenhang...

Der Zusammenhang ist folgender: wenn es irgendein $k [mm] \in \IZ$ [/mm] gibt und ein $b [mm] \in \IN$ [/mm] mit $a + 29 k = [mm] b^2$, [/mm] dann gilt $a [mm] \equiv b^2 \pmod{29}$. [/mm]

Und andersherum, wenn $a [mm] \equiv b^2 \pmod{29}$ [/mm] ist mit $b [mm] \in \IN$, [/mm] dann gilt $29 [mm] \mid [/mm] (a - [mm] b^2)$ [/mm] und somit gibt es ein $k [mm] \in \IZ$ [/mm] mit $a + 29 k = [mm] b^2$. [/mm]

Also: genau dann gibt es in [mm] $m_k(a)$, [/mm] $k [mm] \in \IZ$ [/mm] ein Quadrat, wenn $a$ ein quadratischer Rest modulo 29 ist.

Genauso kannst du jetzt fuer Biquadrate vorgehen...

>  Außerdem verstehe ich nicht, warum ich nur die a's angeben
> soll, ob wohl die Quadratzahlen doch auch gleichzeitig von
> den k's abhängig sind.

Sind sie, aber die $k$s dann explizit zu bestimmen ist aufwaendiger als nur die $a$s zu bestimmen (das geht ja einfach mit dem Legendre-Symbol).

>  Zur Information: Biquadratzahlen sind Zahlen der Form
> [mm](z^{n})^{n}.[/mm]

Hier soll wohl $n = 2$ sein, oder? :)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]