www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Quadraturspektrum
Quadraturspektrum < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadraturspektrum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:51 Mo 11.10.2004
Autor: markusphk

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

ich wusste nicht, wo das hingehört, deswegen poste ich das mal hierhin.

Ich möchte wissen, was man mit dem Quadraturspektrum misst.
Ich weiss, dass das der Imaginärteil des Kreuzspektrums ist. Und es misst wohl scheinbar etwas das "a quarter of a cycle out of phase " ist. Was bedeutet das?

Grüsse
M.

        
Bezug
Quadraturspektrum: Antwort
Status: (Antwort) fertig Status 
Datum: 10:05 Di 12.10.2004
Autor: Stefan

Lieber Markus!

Nehmen wir mal an, wir haben zwei Stichprobenreihen [mm] $y_1,\ldots,y_T$ [/mm] und [mm] $x_1,\ldots,x_T$ [/mm] zweier Zufallsvariablen.

Diese stellen wir spektral dar:

[mm] $y_t [/mm] = [mm] \bar{y} [/mm] + [mm] \sum\limits_{j=1}^{\frac{T-1}{2}} \left\{\hat{\alpha_j} \cdot \cos\left[ \frac{2\pi j}{T}(t-1) \right] + \hat{\delta_j} \cdot \sin \left[ \frac{2\pi j}{T}(t-1) \right] \right\}$, [/mm]

[mm] $x_t [/mm] = [mm] \bar{x} [/mm] + [mm] \sum\limits_{j=1}^{\frac{T-1}{2}} \left\{\hat{a_j} \cdot \cos\left[ \frac{2\pi j}{T}(t-1) \right] + \hat{a_j} \cdot \sin \left[ \frac{2\pi j}{T}(t-1) \right] \right\}$, [/mm]

mit

[mm] $\hat{\alpha_j} [/mm] = [mm] \frac{2}{T} \sum\limits_{t=1}^T y_t \cdot \cos \left[ \frac{2 \pi j}{T} \cdot (t-1) \right]$, [/mm]

[mm] $\hat{\delta_j} [/mm] = [mm] \frac{2}{T} \sum\limits_{t=1}^T y_t \cdot \sin \left[ \frac{2 \pi j}{T} \cdot (t-1) \right]$, [/mm]

[mm] $\hat{a_j} [/mm] = [mm] \frac{2}{T} \sum\limits_{t=1}^T x_t \cdot \cos \left[ \frac{2 \pi j}{T} \cdot (t-1) \right]$, [/mm]

[mm] $\hat{d_j} [/mm] = [mm] \frac{2}{T} \sum\limits_{t=1}^T x_t \cdot \sin \left[ \frac{2 \pi j}{T} \cdot (t-1) \right]$. [/mm]

Dann ist das Quadratspektrum gegeben durch

(*) [mm] $\hat{q}_{xy}\left(\frac{2\pi j}{T}\right) [/mm] = [mm] \frac{T}{8 \pi} \cdot \left( \hat{d_j} \hat{\alpha_j} - \hat{a_j} \hat{\delta_j} \right)$. [/mm]

(Dies ist gerade der Imaginärteil des "Kreuzspektrums" (so wie du es genannt hast).)

Macht man nun die genannte Verschiebung "a quarter of a cycle out of phase", die du angesprochen hast, d.h. geht man zu den Ausdrücken

[mm] $x_t^{\*} [/mm] =  [mm] \bar{x} [/mm] + [mm] \sum\limits_{j=1}^{\frac{T-1}{2}} \left\{\hat{a_j} \cdot \cos\left[ \frac{2\pi j}{T}(t-1) + \frac{\pi}{2} \right] + \hat{a_j} \cdot \sin \left[ \frac{2\pi j}{T}(t-1) + \frac{\pi}{2}\right] \right\}$ [/mm]

über, dann kann man zeigen, dass die (Stichproben-)Kovarianz von [mm] $y_t$ [/mm] und [mm] $x_t^{\*}$ [/mm] gerade durch

(**) [mm] $\frac{1}{2} \sum\limits_{j=1}^{\frac{T-1}{2}} \cdot \left( \hat{d_j} \hat{\alpha_j} - \hat{a_j} \hat{\delta_j} \right)$ [/mm]

gegeben ist.

Jetzt vergleiche mal (*) und (**), dann weißt du, was gemeint war. ;-)

Liebe Grüße
Stefan




Bezug
                
Bezug
Quadraturspektrum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:23 Di 12.10.2004
Autor: markusphk

Ich habe jetzt hier zwei Zeitreihen X(t) , Y(t).

Heisst das jetzt dass das Cospektrum Informationen über die Elemente der ZR liefert die "in Phase" (heisst das so?) sind und das Quadraturspektrum über die Elemente die um [mm] \pi/2 [/mm] verschoben sind?

Bezug
                        
Bezug
Quadraturspektrum: Antwort
Status: (Antwort) fertig Status 
Datum: 10:33 Di 12.10.2004
Autor: Stefan

Hallo Markus!

> Ich habe jetzt hier zwei Zeitreihen X(t) , Y(t).
>
> Heisst das jetzt dass das Cospektrum Informationen über die
> Elemente der ZR liefert die "in Phase" (heisst das so?)
> sind und das Quadraturspektrum über die Elemente die um
> [mm]\pi/2[/mm] verschoben sind?

Das kann man so sagen, ja, wobei ja nur $x$ verschoben ist, $y$ nicht.

Denn: Das Cospektrum ist gegeben durch

[mm] $\hat{c}_{xy}\left(\frac{2\pi j}{T} \right) [/mm] = [mm] \frac{T}{8 \pi} (\hat{a_j} \hat{\alpha_j} [/mm] + [mm] \hat{d_j}\hat{\delta_j})$, [/mm]

und die (Stichproben-)Kovarianz von [mm] $x_t$ [/mm] und [mm] $y_t$ [/mm] ist gegeben durch

[mm] $\frac{1}{2} \sum\limits_{j=1}^{\frac{T-1}{2}} (\hat{a_j} \hat{\alpha_j} [/mm] + [mm] \hat{d_j}\hat{\delta_j})$. [/mm]

Man sieht also ganz deutlich die Parallele zu den Formeln meines letzten Beitrages.

Aber ich habe nicht viel Ahnung davon und bin nur reiner Amateur. Vielleicht sagt ja noch mal ein echter Statistiker was dazu. ;-)

Mich interessiert nur die Analysis dahinter. :-)

Liebe Grüße
Stefan
  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]