www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Quadratische Funktion
Quadratische Funktion < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratische Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:28 Do 20.02.2014
Autor: petapahn

Aufgabe
Sei A [mm] \in \IR^{m\timesn}, b\in\IR^{m} [/mm] und a>0.
Überführe [mm] f(x)=\bruch{1}{2}$\parallel [/mm] Ax-b [mm] \parallel_{2}^{2}\$+\bruch{a}{2}$\parallel [/mm] x [mm] \parallel_{2}^{2}\$ [/mm] in eine quadratische Form, also [mm] f(x)=\bruch{1}{2}x^{T}Cx+c^{T}x+\gamma [/mm]
mit C [mm] \in \IR^{n\times n}, x\in \IR^{n} [/mm] und [mm] \gamma \in \IR [/mm]

Hallo,
ich komme irgendwie nicht richtig hin.
Mein Ansatz bis jetzt:
[mm] \bruch{1}{2}$\parallel [/mm] Ax-b [mm] \parallel_{2}^{2}\$+\bruch{a}{2}$\parallel [/mm] x [mm] \parallel_{2}^{2}\$=\bruch{1}{2}(x^{T}A^{T}Ax-b^{T}Ax-x^{T}A^{T}b+b^{T}b) +\bruch{a}{2}$\parallel [/mm] x [mm] \parallel_{2}^{2}\$= \bruch{1}{2}\parallel Ax\parallel^{2}+\bruch{a}{2}\parallel x\parallel^{2}-b^{T}Ax+\bruch{1}{2}b^{T}b= [/mm]
= [mm] \bruch{1}{2}\parallel\lambda_{min}(A)x\parallel^{2}+\bruch{a}{2}\parallel x\parallel^{2}-b^{T}Ax+\bruch{1}{2}b^{T}b=\bruch{1}{2}x^{T}(|\lambda_{min}(A)|+\bruch{a}{2})x-b^{T}Ax+\bruch{1}{2}b^{T}b [/mm]

Das Problem ist aber, dass [mm] |\lambda_{min}(A)|+\bruch{a}{2} \in \IR [/mm] und nicht in [mm] \IR^{n\timesn} [/mm]
Viele Grüße
petapahn

        
Bezug
Quadratische Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:39 Do 20.02.2014
Autor: fred97


> Sei A [mm]\in \IR^{m\timesn}, b\in\IR^{m}[/mm] und a>0.
>  Überführe [mm]f(x)=\bruch{1}{2}[/mm] [mm]\parallel Ax-b \parallel_{2}^{2}\[/mm][mm] +\bruch{a}{2}[/mm]
> [mm]\parallel x \parallel_{2}^{2}\[/mm] in eine quadratische Form,
> also [mm]f(x)=\bruch{1}{2}x^{T}Cx+c^{T}x+\gamma[/mm]
>  mit C [mm]\in \IR^{n\times n}, x\in \IR^{n}[/mm] und [mm]\gamma \in \IR[/mm]
>  
> Hallo,
>  ich komme irgendwie nicht richtig hin.
>  Mein Ansatz bis jetzt:
>  [mm]\bruch{1}{2}[/mm] [mm]\parallel Ax-b \parallel_{2}^{2}\[/mm][mm] +\bruch{a}{2}[/mm]
> [mm]\parallel x \parallel_{2}^{2}\[/mm][mm] =\bruch{1}{2}(x^{T}A^{T}Ax-b^{T}Ax-x^{T}A^{T}b+b^{T}b) +\bruch{a}{2}[/mm]
> [mm]\parallel x \parallel_{2}^{2}\[/mm]= [mm]\bruch{1}{2}\parallel Ax\parallel^{2}+\bruch{a}{2}\parallel x\parallel^{2}-b^{T}Ax+\bruch{1}{2}b^{T}b=[/mm]
>  
> =
> [mm]\bruch{1}{2}\parallel\lambda_{min}(A)x\parallel^{2}+\bruch{a}{2}\parallel x\parallel^{2}-b^{T}Ax+\bruch{1}{2}b^{T}b=\bruch{1}{2}x^{T}(|\lambda_{min}(A)|+\bruch{a}{2})x-b^{T}Ax+\bruch{1}{2}b^{T}b[/mm]

Oben hast Du Dich vertan.

Probiers mal mit [mm] C=AA^T-aE, [/mm] $c=A^Tb$ und [mm] \gamma=\bruch{1}{2}||b||_2^2 [/mm]

FRED

>  
> Das Problem ist aber, dass [mm]|\lambda_{min}(A)|+\bruch{a}{2} \in \IR[/mm]
> und nicht in [mm]\IR^{n\timesn}[/mm]
>  Viele Grüße
>  petapahn


Bezug
                
Bezug
Quadratische Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:52 Do 20.02.2014
Autor: petapahn

Hallo Fred,
wohl eher: [mm] C=(A^{T}A+aE), c=-A^{T}b, [/mm] oder?
Gruss petapahn

Bezug
                        
Bezug
Quadratische Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 06:10 Fr 21.02.2014
Autor: fred97


> Hallo Fred,
>  wohl eher: [mm]C=(A^{T}A+aE), c=-A^{T}b,[/mm] oder?

Kann sein, dass mir ein Vorzeichenfehler unterlaufen ist.

FRED


>  Gruss petapahn


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]