www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Quadratische Formen
Quadratische Formen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratische Formen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:20 Di 12.01.2010
Autor: valoo

Aufgabe
[mm] \integral_{-\infty}^{\infty}{exp(-a*x^{2}+2*b*x)dx} [/mm]
kann vereinfacht werden durch Substitution: [mm] x=y+\bruch{b}{a} [/mm]
Verallgemeinerung des Argumentes der e-Funktion:
[mm] \Phi:=-x^{T}*A*x+x^{T}*b+b^{T}*x [/mm] wobei A eine invertierbare, symmertrische Matrix ist und x sowie b Spaltenvektoren sind.

a) Bestimmen Sie den Spaltenvektor c, sodass nach Substitution x=y+c keine Terme linear in y übrigbleiben. [mm] (c=A^{-1}*b) [/mm]

b) Bestimmen Sie [mm] \Phi [/mm] nach Substitution von x durch y.
[mm] (\Phi=-y^{T}*A*y+b^{T}*A^{-1}*b) [/mm]

So, Aufgabe a) versteh ich überhaupt nicht. Was soll ich bitte machen? Und woher kommt auf einmal die Inverse Matrix???

Bei b) ist es nicht besser. Ich weiß überhaupt nicht, wie ich mit diesem Gedöhns rechnen soll. Und schon wieder taucht die Inverse Matrix aus dem Nichts auf... Woher???
Ich meine, wenn ich substituiere, dann ist da doch keine inverse Matrix. Und ich meine auch, dass das durch die Substitution nicht einfacher wird (jedenfalls sieht es für mich so aus...)
[mm] -(y+\bruch{b}{a})^{T}*A*(y+\bruch{b}{a})+(y+\bruch{b}{a})^{T}*b+b^{T}*(y+\bruch{b}{a}) [/mm]
Wie soll's jetzt weitergehen? Kann ich das Transponieren aufspalten, ist das distributiv? Wie vereinfache ich dieses Ding nun?

        
Bezug
Quadratische Formen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:21 Fr 15.01.2010
Autor: angela.h.b.

Hallo,

ich würde die Aufgabe in etwa so übersetzen:

mach eine Hauptachsentransformation für [mm] \Phi:=-x^{T}*A*x+x^{T}*b+b^{T}*x[/mm] [/mm] .

Gruß v. Angela

Bezug
                
Bezug
Quadratische Formen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:39 Sa 16.01.2010
Autor: valoo

Hauptachsentransformation? Da habe ich ja noch nie was von gehört...
Wie stelle ich das denn an? Ich habe mal nachgelesen, aber das, was ich da gelesen habe, fand ich nicht gerade verständlich, Überführen in eine Diagonalmatrix mit den Eigenwerten als Einträge? Wir hatten weder Diagonalisierung noch Eigenwerte...
Bei wikipedia steht was im Artikel HAT, was ganz ähnlich aussieht... und das dann auch in Summendarstellung. Kann ich also irgendwie durch die Summendarstellung auf das Ergebnis kommen???

[mm] -x^{T}*A*x+x^{T}*b+b^{T}*x=-(\summe_{i=1}^{n}(a_{i,i}*x_{i}^{2})+2*\summe_{i=1}^{n-1}\summe_{j=i+1}^{n}(a_{i,j}*x_{i}*x_{j}))+2*\summe_{i=1}^{n}(b_{i}*x_{i}) [/mm]

Wenn ich hier nun [mm] x_{i} [/mm] durch [mm] (y_{i}+\bruch{1}{a}*b_{i}) [/mm] ersetze, habe ich eine Chance auf das Ergebnis zu kommen? Ich weiß aber immer noch nicht, woher die Inverse von A kommt. Wie sähe die denn in Summendarstellung aus?



Bezug
        
Bezug
Quadratische Formen: Tipp
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:07 Fr 15.01.2010
Autor: jennilein

Ich weiß nicht ob mein Ansatz richtig ist, aber ich verstehe a) so, dass du eine lineare Gleichung aufstellst, in der dein y = 0 ist und dann das Ganze nach c ausrechnest...

Bezug
                
Bezug
Quadratische Formen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:54 So 17.01.2010
Autor: valoo

So ganz versteh ich das nicht.
Es heißt ja zuerst, dass man x durch [mm] y+\bruch{1}{a}*b [/mm] substituieren soll. Soll man nun zeigen, dass die Inverse von A gerade die Multiplikation mit [mm] \bruch{1}{a} [/mm] ist?
[mm] y+\bruch{1}{a}*b=y+c [/mm]

<=> [mm] \bruch{1}{a}*b=c [/mm]

<=> [mm] \bruch{1}{a}*A*b=A*c [/mm]

<=> [mm] \bruch{1}{a}*a*b=A*c [/mm]

<=> b=A*c

<=> [mm] c=A^{-1}*b [/mm]

Bezug
        
Bezug
Quadratische Formen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Mo 18.01.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]