www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Quadrat der Vektorsumme
Quadrat der Vektorsumme < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadrat der Vektorsumme: Vektorsumme
Status: (Frage) beantwortet Status 
Datum: 11:43 Mo 20.10.2014
Autor: mcx

Aufgabe
Berechnen Sie für zwei Vektoren
[mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] das Quadrat ihrer Vektorsumme [mm] (\vec{a}+\vec{b})^{2} [/mm]

Diskutieren Sie die Sonderfälle und fertigen Sie Skizzen an.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

ich habe die oben angegebene Aufgabe eigentlich schon bearbeitet aber ich verstehe nicht was mit Sonderfällen gemeint ist.

Hier meine Bearbeitung bis hierhin:

[mm] (\vec{a}+\vec{b})^{2}=(\vec{a}+\vec{b})(\vec{a}+\vec{b})=\vec{a}*\vec{a}+\vec{a}*\vec{b}+\vec{b}*\vec{a}+\vec{b}*\vec{b} [/mm]

Aus dem Skalarprodukt gehen folgende Beziehungen hervor:

[mm] a=\wurzel{\vec{a}*\vec{a}} [/mm] und [mm] \vec{a}*\vec{b}=abcos\alpha [/mm]

Wenn ich das einsetze bekomme ich

[mm] \vec{a}*\vec{a}+\vec{a}*\vec{b}+\vec{b}*\vec{a}+\vec{b}*\vec{b}= a^{2}+2abcos\alpha+b^{2} [/mm]

Was sind jetzt da die Sonderfälle?

Danke schonmal im voraus

        
Bezug
Quadrat der Vektorsumme: Antwort
Status: (Antwort) fertig Status 
Datum: 11:56 Mo 20.10.2014
Autor: angela.h.b.


> Berechnen Sie für zwei Vektoren
> [mm]\vec{a}[/mm] und [mm]\vec{b}[/mm] das Quadrat ihrer Vektorsumme
> [mm](\vec{a}+\vec{b})^{2}[/mm]

>

> Diskutieren Sie die Sonderfälle

Hallo,

damit ist gemeint, daß Du betrachten sollst, daß [mm] \vec{b} [/mm] ein Vielfaches von [mm] \vec{a} [/mm] ist,
oder daß [mm] \vec{a}\perp \vec{b}. [/mm]

LG Angela

Bezug
                
Bezug
Quadrat der Vektorsumme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:03 Mo 20.10.2014
Autor: mcx

Ah okay.

D.h wenn die Vektoren senkrecht aufeinander stehen fällt einfach der term [mm] 2abcos\alpha [/mm] weg da cos(90°) ja 0 ist. also bekomme ich im fall [mm] \vec{a}\perp \vec{b}= a^{2}+b^{2} [/mm] was graphisch praktisch der Länge von a zum Quadrat plus der Länge von b zum Quadrat entspricht oder?



Das mit dem [mm] \vec{b} [/mm] ein vielfaches von [mm] \vec{a} [/mm] verstehe ich nicht ganz. Ist damit gemeint das sie linear abhängig sind?

Bezug
                        
Bezug
Quadrat der Vektorsumme: Antwort
Status: (Antwort) fertig Status 
Datum: 12:23 Mo 20.10.2014
Autor: leduart

Hallo
1. ja das ist der Satz von P...?
2. ja, [mm] \vec{a}=r*\vec{b} [/mm]
Gruß leduart

Bezug
                                
Bezug
Quadrat der Vektorsumme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:47 Mo 20.10.2014
Autor: mcx

Ah jetzt klingelts! Pythagoras macht Sinn.

Wenn die Vektoren linear abhängig sind dann kann man doch einfach den skalar ausklammern und man bekommt

[mm] \vec{a}*\lambda\vec{b}= \lambda(\vec{a}*\vec{b}) [/mm] = [mm] \lambda(\vec{a}*\vec{a}) [/mm] (weil [mm] \vec{a}=\vec{b}) [/mm] = [mm] \lambda a^{2} [/mm]

Wie kann ich mir das graphisch vorstellen. Ist [mm] \lambda a^{2} [/mm] jetzt die Länge von [mm] \vec{b} [/mm] zum Quadrat?


Bezug
                                        
Bezug
Quadrat der Vektorsumme: Antwort
Status: (Antwort) fertig Status 
Datum: 13:08 Mo 20.10.2014
Autor: fred97


> Ah jetzt klingelts! Pythagoras macht Sinn.
>
> Wenn die Vektoren linear abhängig sind dann kann man doch
> einfach den skalar ausklammern und man bekommt
>
> [mm]\vec{a}*\lambda\vec{b}= \lambda(\vec{a}*\vec{b})[/mm] =
> [mm]\lambda(\vec{a}*\vec{a})[/mm] (weil [mm]\vec{a}=\vec{b})[/mm] = [mm]\lambda a^{2}[/mm]

????

Du hast [mm] \vec{b}=\lambda*\vec{a}. [/mm]

Dann ist

[mm]\vec{a}*\vec{b}= \lambda(\vec{a}*\vec{a})[/mm]  = [mm]\lambda a^{2}[/mm]

>  
> Wie kann ich mir das graphisch vorstellen. Ist [mm]\lambda a^{2}[/mm]
> jetzt die Länge von [mm]\vec{b}[/mm] zum Quadrat?

Nein. [mm] b^2=(\lambda a)^2= \lambda^2*a^2 [/mm]

FRED

>  


Bezug
                                                
Bezug
Quadrat der Vektorsumme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:23 Mo 20.10.2014
Autor: mcx

Ah. Ja das macht mehr sinn als das was ich aufgeschrieben hatte. Also nochmal in Worte gefasst ist die Länge b zum Quadrat gleich Skalar zum Quadrat mal die länge a zum Quadrat, vorausgesetzt [mm] \vec{a} [/mm] ist ein vielfaches von [mm] \vec{b} [/mm] (linear abhängig).

Vielen Dank an alle die mir bei dieser Frage und auch in den letzten Tagen bei anderen Fragen geholfen haben. Zum Anfang des Studiums ist das wirklich eine sehr große Hilfe. Danke! Danke! Danke!

Bezug
                                                        
Bezug
Quadrat der Vektorsumme: Antwort
Status: (Antwort) fertig Status 
Datum: 13:36 Mo 20.10.2014
Autor: fred97


> Ah. Ja das macht mehr sinn als das was ich aufgeschrieben
> hatte. Also nochmal in Worte gefasst ist die Länge b zum
> Quadrat gleich Skalar zum Quadrat mal die länge a zum
> Quadrat, vorausgesetzt [mm]\vec{a}[/mm] ist ein vielfaches von
> [mm]\vec{b}[/mm] (linear abhängig).

ja

FRED

>
> Vielen Dank an alle die mir bei dieser Frage und auch in
> den letzten Tagen bei anderen Fragen geholfen haben. Zum
> Anfang des Studiums ist das wirklich eine sehr große
> Hilfe. Danke! Danke! Danke!


Bezug
        
Bezug
Quadrat der Vektorsumme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:56 Mo 20.10.2014
Autor: mcx

Kleine korrektur: [mm] \vec{a}*\vec{a}= 2abcos\alpha [/mm] sollte [mm] \vec{a}*\vec{b}=2abcos\alpha [/mm] sein.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]