www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Eigenwertprobleme" - QR-Zerlegung
QR-Zerlegung < Eigenwertprobleme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Eigenwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

QR-Zerlegung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:50 Di 24.04.2012
Autor: Mathe-Lily

Aufgabe
Bestimmen Sie mit Hilfe der Householder-Transformation eine QR-Zerlegung der Matrix A= [mm] \pmat{ 4 & -1 & 1 \\ 0 & 4 & -1 \\ 3 & 3 & 7} [/mm]

Hallo!
Ich hatte gedacht, dass die QR-Zerlegung (nach Skript) so zustande kommt, dass man A mit Householdermatrizen multipliziert. Und diese Householdermatrizen bekommt man durch die Formel:
[mm] H_{ij}(x)= \delta_{ij}-2 \bruch{x_{i}x_{j}}{|x|^{2}} [/mm] (i,j=1,...,n)
Aber dafür brauche ich doch ein x!? Und das habe ich nicht gegeben!
Übersehe ich da was?
Kann mir jemand helfen?
Das wäre toll! :-)

        
Bezug
QR-Zerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:11 Fr 27.04.2012
Autor: Mathe-Lily

hat sich erledigt, hab die Lösung :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Eigenwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]