www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abiturvorbereitung" - Pyramidenaufgabe
Pyramidenaufgabe < Abivorbereitung < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Pyramidenaufgabe: Übungsaufgabe (aktuell)
Status: (Übungsaufgabe) Aktuelle Übungsaufgabe Status (unbefristet) 
Datum: 18:02 Fr 24.10.2008
Autor: informix

Aufgabe
In einem kartesischen Koordinatensystem sind die Punkte A(6;0;0), B(0;6;0), $ [mm] C(0;0;c_{3}) [/mm] $ und D(3;-3;8) gegeben.

1. a) Bestimmen Sie $ [mm] c_{3}>0 [/mm] $ so, dass der Punkt C vom Punkt A die Entfernung 10 LE besitzt!

1. b) Zeichnen Sie die Punkte A, B, C in ein Koordinatensystem und zeichnen Sie ihre Verbindungsstrecken als Spuren einer Ebene E! Bestimmen Sie eine Gleichung von E in Normalenform!

1. c) Bestimmen Sie rechnerisch eine Gleichung der Innenwinkelhalbierenden w des Winkels BCA, den Schnittpunkt S von w mit der Geraden AB sowie den Winkel $ [mm] \delta [/mm] $ von w mit AB!
Zeichnen Sie w und S in das Koordinatensystem von Teilaufgabe 1b und deuten Sie das Ergebnis geometrisch!

2. a) Die Punkte A, B, C und der Ursprung 0 bilden eine Pyramide. Berechen Sie das Volumen dieser Pyramide!

2. b) Zeichnen Sie das Viereck ABCD in das Koordinatensystem von 1b und zeigen Sie, dass das Viereck ABCD ein Trapez ist! Berechen Sie den Flächeninhalt dieses Trapezes!

3. Die Ebene E': x+y-z-6=0 schneidet die Ebene E (siehe Aufgabe 1b) in einer Geraden s. Zeigen Sie, dass s=AB gilt, und zeichnen Sie E' mit Hilfe ihrer Spuren in das Koordinatensystem von Aufgabe 1b.  

Diese Aufgabe wurde im Forum gestellt und teilweise gelöst.
Ich stelle sie hier als Gesamtaufgabe noch einmal ein - als Übung zum Abitur.

Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]