www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Pyramide: Abstandsproblem
Pyramide: Abstandsproblem < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Pyramide: Abstandsproblem: Tipp
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:27 Mi 11.04.2007
Autor: matheLK-Abi07

Aufgabe
Es gibt eine dreiseitige Pyramide mit den folgenden Ecken:

S1(6/0/0), S2(0/-6/0), O(0/0/0)  und S3(0/0/12)

Bestimmen Sie den Parameter s so, dass der Punkt S(s/-s/s) von allen vier Seitenflächen der Pyramide gleichen Anstand hat und im Inneren der Pyramide liegt.

ich habs folgendermaßen versucht:

Für alle 4 Seitenflächen jeweils eine Ebenengleichung aufgestellt:

Ebene-S2S1O:
   [mm] \vec{x} [/mm] = [mm] \vektor{0 \\ -6 \\ 0} [/mm] + [mm] r*\vektor{0 \\ 6 \\ 0} [/mm] + [mm] t*\vektor{6 \\ 6 \\ 0} [/mm]

[mm] \gdw [/mm] Normalenvektor: [mm] \vec{n} [/mm] = [mm] \vektor{0 \\ 0 \\ 0} [/mm]

Ebene-S3S2S1:
   [mm] \vec{x} [/mm] = [mm] \vektor{0 \\ 0 \\ 12} [/mm] + [mm] r*\vektor{0 \\ -6 \\ -12} [/mm] + [mm] t*\vektor{6 \\ 0 \\ -12} [/mm]

[mm] \gdw [/mm] Normalenvektor: [mm] \vec{n} [/mm] = [mm] \vektor{2 \\ -2 \\ 1} [/mm]

Koordinatenform: 2x1-2x2+x3=12

Ebene-S3S1O:
   [mm] \vec{x} [/mm] = [mm] \vektor{0 \\0 \\12} [/mm] + [mm] r*\vektor{6 \\ 0 \\ -12} [/mm] + [mm] t*\vektor{0 \\ 0 \\ -12} [/mm]

[mm] \gdw [/mm] Normalenvektor: [mm] \vec{n} [/mm] = [mm] \vektor{0 \\ 0 \\ 0} [/mm]

Ebene-S3S2O:
   [mm] \vec{x} [/mm] = [mm] \vektor{0 \\0 \\ 12} [/mm] + [mm] r*\vektor{0 \\ -6 \\ -12} [/mm] + [mm] t*\vektor{0 \\ 0 \\ -12} [/mm]

[mm] \gdw [/mm] Normalenvektor: [mm] \vec{n} [/mm] = [mm] \vektor{0 \\ 0 \\ 0} [/mm]

jetzt wollte ich es so weitermachen:

//Abstand eines Punktes von einer Ebene mithilfe der Koordnitaenform//

d = | [mm] \bruch{0*s+0*(-s)+0*s}{\wurzel{0^2+0^2+0^2}} [/mm] |

d = | [mm] \bruch{2*s+(-2)*(-s)+1*s-12}{\wurzel{2^2+(-2)^2+1^2}} [/mm] |


d = | [mm] \bruch{0*s+0*(-s)+0*s}{\wurzel{0^2+0^2+0^2}} [/mm] |


d = | [mm] \bruch{0*s+0*(-s)+0*s}{\wurzel{0^2+0^2+0^2}} [/mm] |

naja.. da ich ja für d = 0 habe, kann ich jetzt so nich weiter machen...
kann jemand mir bitte helfen, wie ich das anders lösen könnte?

vielen dank schon im voraus....

liebe grüße,
matheLK-Abi07

        
Bezug
Pyramide: Abstandsproblem: Rückfrage
Status: (Antwort) fertig Status 
Datum: 13:44 Mi 11.04.2007
Autor: statler

Hey,

wie hast du denn diese merkwürdigen (und falschen) Normalenvektoren berechnet?

Mit dem Kreuzprodukt, oder aus der Koordinatenform der Ebene, oder noch anders?

Also: nächster Anlauf ...

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
Pyramide: Abstandsproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:56 Mi 11.04.2007
Autor: abi2007LK

Er hat es wohl so gemacht:

Spannvektor1 * Normalvektor = Spannvektor2 * Normalvektor.



Bezug
                
Bezug
Pyramide: Abstandsproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:58 Mi 11.04.2007
Autor: matheLK-Abi07

mithilfe der richtungsvektoren der ebenen:

1.Ebene:          6n2 = 0
              6n1 + 6n2 = 0

       [mm] \gdw [/mm] n2 = 0; n1 = 0; n3 = 0

2. Ebene:        -6n2 - 12n3 = 0
                  6n1        -12n3 = 0
          
       [mm] \gdw [/mm]  für n3 = 1 wählen    [mm] \gdw [/mm]  n1 = 2    [mm] \gdw [/mm]  n2 = -2

usw...

ist das denn so falsch? habe es immer so gemacht. vielleicht habe ich mich verrechnet. das kann natürlich auch sein, was bei mir sehr oft vorkommt.

Liebe Grüße und danke für die schnelle Rückmeldung...

Bezug
                        
Bezug
Pyramide: Abstandsproblem: Nee
Status: (Antwort) fertig Status 
Datum: 14:34 Mi 11.04.2007
Autor: statler


> mithilfe der richtungsvektoren der ebenen:
>  
> 1.Ebene:          6n2 = 0
>                6n1 + 6n2 = 0

Wie kommst du darauf? Beide Richtungsvektoren haben z = 0, liegen also in der x-y-Ebene. Die Koordinatenform dieser Ebene ist eben auch z=0. Dann ist natürlich (0|0|1) ein Normalenvektor, sogar einer der Länge 1.

Das Kreuzprodukt wäre ((0|0|-36).

> [mm]\gdw[/mm] n2 = 0; n1 = 0; n3 = 0

Jetzt verstehe ich es erst. Aber die Folgerung n3 = 0 ist falsch, n3 ist beliebig.

> 2. Ebene:        -6n2 - 12n3 = 0
>                    6n1        -12n3 = 0
>            
> [mm]\gdw[/mm]  für n3 = 1 wählen    [mm]\gdw[/mm]  n1 = 2    [mm]\gdw[/mm]  n2 = -2
>  
> usw...
>  
> ist das denn so falsch? habe es immer so gemacht.
> vielleicht habe ich mich verrechnet. das kann natürlich
> auch sein, was bei mir sehr oft vorkommt.

Dein Ansatz ist anscheinend doch richtig, der Fehler liegt in der Durchführung.

Bis später
Dieter


Bezug
                        
Bezug
Pyramide: Abstandsproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 14:42 Mi 11.04.2007
Autor: Mary15


> mithilfe der richtungsvektoren der ebenen:
>  
> 1.Ebene:          6n2 = 0
>                6n1 + 6n2 = 0
>  
> [mm]\gdw[/mm] n2 = 0; n1 = 0; n3 = 0

Hi,
0-Vektor kann nicht als Normalenvektor gewählt werden.
In deiner Berechnung hast du für [mm] n_{1} [/mm] und [mm] n_{2} [/mm] zwar richtig 0 rausgekriegt, aber für [mm] n_{3} [/mm] musst du eine beliebige Zahl wählen, die ungleich 0 ist.  


Bezug
                                
Bezug
Pyramide: Abstandsproblem: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 16:23 Mi 11.04.2007
Autor: matheLK-Abi07

vielan dank für eure hilfe... ich habs soweit fertig.

ich habe ne rückfrage, kann es denn mehrere solche punkte geben oder gibt es nur eine einzige lösung? denn ich habe für s = 6 und in der musterlösung steht s = 1,5.

  ich habs so gemacht:

   d = [mm] |\bruch{2s-2*(-s)+s-12}{\wurzel{2^2+(-2)^2+1^2}} [/mm] | = s
     5s-12 = 3s
      s = 6

  ist das denn so auch richtig?  eigentlich müsste das ja so auch richtig sein, denn wenn ich die probe mache, ob alle ebenen von diesem punkt den gleichen abstand haben, dann stimmt es... trotzdem möchte ich gerne wissen, ob es richtig ist.

vielen dank für eure hilfe :)

mit lieben grüßen,
matheLK-Abi07

Bezug
                                        
Bezug
Pyramide: Abstandsproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 16:36 Mi 11.04.2007
Autor: statler

Hi!

Ich kann das jetzt nicht mehr genau durchhecheln, aber in der Aufgabe
steht ausdrücklich 'den Punkt im Innern der P.' Daraus würde ich sofort schließen, daß es einen im Innern und vllt. sogar mehrere im Äußeren gibt.

Bei einem Dreieck gibt es ja auch den Inkreis und 3 Ankreise.

Ciao
Dieter


Bezug
                                                
Bezug
Pyramide: Abstandsproblem: danke schön :)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:58 Mi 11.04.2007
Autor: matheLK-Abi07

danke schön für eure hilfe :)


d = $ [mm] |\bruch{2s-2\cdot{}(-s)+s-12}{\wurzel{2^2+(-2)^2+1^2}} [/mm] $ | = |-s|

  s = 1,5
  
ich habs jetzt raus... d muss man gleich -s setzen, dann passt das ;)

danke schön

Bezug
                                        
Bezug
Pyramide: Abstandsproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 17:16 Mi 11.04.2007
Autor: Mary15


> vielan dank für eure hilfe... ich habs soweit fertig.
>  
> ich habe ne rückfrage, kann es denn mehrere solche punkte
> geben oder gibt es nur eine einzige lösung? denn ich habe
> für s = 6 und in der musterlösung steht s = 1,5.
>  
> ich habs so gemacht:
>  
> d = [mm]|\bruch{2s-2*(-s)+s-12}{\wurzel{2^2+(-2)^2+1^2}}[/mm] | = s
>       5s-12 = 3s
>        s = 6

In deiner Abstand-Formel steht der Betrag. D.h. du musst bei Weglassen 2 Möglichkeiten betrachten: d>0 und d<0
Also noch dazu:
5s-12 = -3s
s = 1,5
Jetzt musst du entscheiden für welchen s liegt der Punkt im Innern. Dafür kannst du z.B. den Abstand von O bis zur Ebene [mm] S_{1}S_{2}S_{3} [/mm] berechnen und mit dem Abstand von O bis zu Punkte (s = 6 und s = 1,5) vergleichen.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]