www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Punktweise Konvergenz
Punktweise Konvergenz < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punktweise Konvergenz: Bestätigung oder Korrektur
Status: (Frage) überfällig Status 
Datum: 21:25 So 28.12.2014
Autor: kullinarisch

Aufgabe
Gegeben: [mm] y(x,\varepsilon)' [/mm] = [mm] \begin{cases} \Phi(x)' & \mbox{für } a [mm] x\in (a,b)\subset \IR [/mm]
[mm] \varepsilon, \psi, \omega, c\in\IR [/mm]
[mm] 0\le\varepsilon<\psi-c [mm] \Phi(c)'\not= \omega [/mm]

Zeige: Die Aussage [mm] \limes_{\varepsilon \rightarrow 0+}|y(x,\varepsilon)' [/mm] - [mm] \Phi(x)'| [/mm] = 0 für alle [mm] x\in[a,b] [/mm] ist falsch. ( [mm] \limes_{\varepsilon \rightarrow 0+} [/mm] soll heißen: rechter Grenzwert an 0).


Moin,

meine Gedanken dazu: es liegt an dem Punkt x=  [mm] \limes_{\varepsilon \rightarrow c+}\varepsilon [/mm] (rechtsseitiger Grenzwert an c). Das ist nämlich der einzige Punkt bei dem [mm] y(x,\varepsilon) [/mm] unabhängig von [mm] \varepsilon [/mm] ist. Aber wie sieht eigentlich [mm] \limes_{\varepsilon \rightarrow 0+} y(x,\varepsilon)' [/mm] aus?


So?  [mm] \limes_{\varepsilon \rightarrow 0+} y(x,\varepsilon)' [/mm] = [mm] \begin{cases} \Phi(x)' & \mbox{für } a









Ich habe irgendwie Probleme mit der Formulierung der Aufgabenstellung. Hat das hier was mit punktweiser oder gleichmäßiger Konvergenz zu tun? Ich formulier mal um: Wenn ich anstatt [mm] y(x,\varepsilon)' [/mm] folgende Funktionenfolge betrachte:


[mm] y_n(x)':=\begin{cases} \Phi(x)' & \mbox{für } a
[mm] x\in (a,b)\subset \IR [/mm]
[mm] \bruch{1}{n}, \psi, \omega, c\in\IR [/mm]
[mm] 0\le\bruch{1}{n}<\psi-c [mm] \Phi(c)'\not= \omega [/mm]


jetzt zu zeigen, dass [mm] \limes_{n \rightarrow \infty}|y_n(x)' [/mm] - [mm] \Phi(x)'| [/mm] = 0 für alle [mm] x\in [/mm] [a,b] NICHT gilt, ist ja eigentlich das selbe Problem. Aber um was geht es hier dann eigentlich? Um punktweise Konvergenz oder um gleichmäßige Konvergenz?


Grüße und guten Rutsch
kullinarisch






        
Bezug
Punktweise Konvergenz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Mo 05.01.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]