Punktweise&Gleichmäßige Konv. < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Für jedes n [mm] \in \IN [/mm] sei die Funktion [mm] f_{n} [/mm] : [mm] \IR \to \IR D(f_{n}) [/mm] = [0, [mm] \infty] [/mm] und
[mm] f_{n}(x)= \bruch{e^{-nx}}{n^{2}}
[/mm]
a) Zeigen Sie, daß die Funktionsreihe [mm] \summe_{n=1}^{\infty}f_{n} [/mm] auf [0, [mm] \infty] [/mm] punktweise und gleichmäßig konvergiert.
b) Berechnen Sie [mm] \integral_{0}^{1}{g(x) dx}, [/mm] wobei g: [mm] \IR \to \IR [/mm] mit D(g)=[0, [mm] \infty] [/mm] und g(x)= [mm] \summe_{n=1}^{\infty}f_{n}(x) [/mm] die Summe der Funktionsreihe [mm] \summe_{n=1}^{\infty}f_{n} [/mm] ist.
c) Für welche x [mm] \in \IR [/mm] konvergiert die Reihe [mm] \summe_{n=1}^{\infty}f'_{n}(x) [/mm] ? |
Hallo,
hier die i) zur Korrektur:
Für punktweise Konvergenz:
[mm] f(x)=\limes_{n\rightarrow\infty}f_{n}(x)=\limes_{n\rightarrow\infty}(\bruch{e^{-nx}}{n^{2}})=0 [/mm] , x [mm] \ge [/mm] 1
--> Daraus folgt punktweise konvergent.
Für gleichmäßige Konvergenz:
[mm] \limes_{n\rightarrow\infty} [/mm] | [mm] f_{n}(x) [/mm] - f(x)| = [mm] \limes_{n\rightarrow\infty} [/mm] | [mm] (\bruch{e^{-nx}}{n^{2}}) [/mm] - (0) | = 0
Daraus folgt gleichmäßige konvergent.
Eine kleine Verständnisfrage hier noch: Wenn nicht ,,Null'' herausgekommen wäre, sondern eine x-beliebige Zahl, dann wäre hier keine gleichmäßgige Konvergenz vorhanden, richtig?
|
|
|
|
> Für jedes n [mm]\in \IN[/mm] sei die Funktion [mm]f_{n}[/mm] : [mm]\IR \to \IR D(f_{n})[/mm]
> = [0, [mm]\infty][/mm] und
>
> [mm]f_{n}(x)= \bruch{e^{-nx}}{n^{2}}[/mm]
>
> a) Zeigen Sie, daß die Funktionsreihe
> [mm]\summe_{n=1}^{\infty}f_{n}[/mm] auf [0, [mm]\infty][/mm] punktweise und
> gleichmäßig konvergiert.
>
> b) Berechnen Sie [mm]\integral_{0}^{1}{g(x) dx},[/mm] wobei g: [mm]\IR \to \IR[/mm]
> mit D(g)=[0, [mm]\infty][/mm] und g(x)=
> [mm]\summe_{n=1}^{\infty}f_{n}(x)[/mm] die Summe der Funktionsreihe
> [mm]\summe_{n=1}^{\infty}f_{n}[/mm] ist.
>
> c) Für welche x [mm]\in \IR[/mm] konvergiert die Reihe
> [mm]\summe_{n=1}^{\infty}f'_{n}(x)[/mm] ?
> Hallo,
Hallo!
>
> hier die i) zur Korrektur:
>
> Für punktweise Konvergenz:
>
> [mm]f(x)=\limes_{n\rightarrow\infty}f_{n}(x)=\limes_{n\rightarrow\infty}(\bruch{e^{-nx}}{n^{2}})=0[/mm]
> , x [mm]\ge[/mm] 1
>
Warum nur für [mm] $x\ge1$ [/mm] ? Was ist mit [mm] $x\in [/mm] [0,1]$? Für diese x konvergiert die Funktionenfolge auch punktweise gegen Null.
> --> Daraus folgt punktweise konvergent.
>
> Für gleichmäßige Konvergenz:
>
> [mm]\limes_{n\rightarrow\infty}[/mm] | [mm]f_{n}(x)[/mm] - f(x)| =
> [mm]\limes_{n\rightarrow\infty}[/mm] | [mm](\bruch{e^{-nx}}{n^{2}})[/mm] -
> (0) | = 0
>
Für die glm. Konvergenz musst du die Konvergenz in der Supremumsnorm untersuchen, also [mm] $\sup_x |f_n-f|$.
[/mm]
Gruß Patrick
> Daraus folgt gleichmäßige konvergent.
>
> Eine kleine Verständnisfrage hier noch: Wenn nicht
> ,,Null'' herausgekommen wäre, sondern eine x-beliebige
> Zahl, dann wäre hier keine gleichmäßgige Konvergenz
> vorhanden, richtig?
|
|
|
|
|
> > Für jedes n [mm]\in \IN[/mm] sei die Funktion [mm]f_{n}[/mm] : [mm]\IR \to \IR D(f_{n})[/mm]
> > = [0, [mm]\infty][/mm] und
> >
> > [mm]f_{n}(x)= \bruch{e^{-nx}}{n^{2}}[/mm]
> >
> > a) Zeigen Sie, daß die Funktionsreihe
> > [mm]\summe_{n=1}^{\infty}f_{n}[/mm] auf [0, [mm]\infty][/mm] punktweise und
> > gleichmäßig konvergiert.
> >
> > b) Berechnen Sie [mm]\integral_{0}^{1}{g(x) dx},[/mm] wobei g: [mm]\IR \to \IR[/mm]
> > mit D(g)=[0, [mm]\infty][/mm] und g(x)=
> > [mm]\summe_{n=1}^{\infty}f_{n}(x)[/mm] die Summe der Funktionsreihe
> > [mm]\summe_{n=1}^{\infty}f_{n}[/mm] ist.
> >
> > c) Für welche x [mm]\in \IR[/mm] konvergiert die Reihe
> > [mm]\summe_{n=1}^{\infty}f'_{n}(x)[/mm] ?
> > Hallo,
>
> Hallo!
>
> >
> > hier die i) zur Korrektur:
> >
> > Für punktweise Konvergenz:
> >
> >
> [mm]f(x)=\limes_{n\rightarrow\infty}f_{n}(x)=\limes_{n\rightarrow\infty}(\bruch{e^{-nx}}{n^{2}})=0[/mm]
> > , x [mm]\ge[/mm] 1
> >
>
> Warum nur für [mm]x\ge1[/mm] ? Was ist mit [mm]x\in [0,1][/mm]? Für diese x
> konvergiert die Funktionenfolge auch punktweise gegen
> Null.
stimmt den [mm] \limes_{n\rightarrow\infty}(\bruch{e^{-nx}}{n^{2}})=0 [/mm] für x [mm] \in [/mm] [0,1] , weil ja [mm] \bruch{1}{n^{2}} [/mm] eine Nullfolge ist
>
>
> > --> Daraus folgt punktweise konvergent.
> >
> > Für gleichmäßige Konvergenz:
> >
> > [mm]\limes_{n\rightarrow\infty}[/mm] | [mm]f_{n}(x)[/mm] - f(x)| =
> > [mm]\limes_{n\rightarrow\infty}[/mm] | [mm](\bruch{e^{-nx}}{n^{2}})[/mm] -
> > (0) | = 0
> >
>
> Für die glm. Konvergenz musst du die Konvergenz in der
> Supremumsnorm untersuchen, also [mm]\sup_x |f_n-f|[/mm].
>
ich habe mir mal den http://de.wikipedia.org/wiki/Gleichm%C3%A4%C3%9Fige_Konvergenz durchgelesen, um das mit der supremumsnorm zu verstehen. irgendwie verstehe ich das doch nicht. also das supremum ist ja die obere schranke, also in dem fall das [mm] \infty [/mm] oder?
dann habe ich das doch richtig mit
" [mm]\limes_{n\rightarrow\infty}[/mm] | [mm]f_{n}(x)[/mm] - f(x)| =
[mm]\limes_{n\rightarrow\infty}[/mm] | [mm](\bruch{e^{-nx}}{n^{2}})[/mm] - (0) | = 0 "
> Gruß Patrick
>
>
>
> > Daraus folgt gleichmäßige konvergent.
> >
> > Eine kleine Verständnisfrage hier noch: Wenn nicht
> > ,,Null'' herausgekommen wäre, sondern eine x-beliebige
> > Zahl, dann wäre hier keine gleichmäßgige Konvergenz
> > vorhanden, richtig?
>
|
|
|
|
|
Hallo,
> > > Für jedes n [mm]\in \IN[/mm] sei die Funktion [mm]f_{n}[/mm] : [mm]\IR \to \IR D(f_{n})[/mm]
> > > = [0, [mm]\infty][/mm] und
> > >
> > > [mm]f_{n}(x)= \bruch{e^{-nx}}{n^{2}}[/mm]
> > >
> > > a) Zeigen Sie, daß die Funktionsreihe
> > > [mm]\summe_{n=1}^{\infty}f_{n}[/mm] auf [0, [mm]\infty][/mm] punktweise und
> > > gleichmäßig konvergiert.
> > >
> > > b) Berechnen Sie [mm]\integral_{0}^{1}{g(x) dx},[/mm] wobei g: [mm]\IR \to \IR[/mm]
> > > mit D(g)=[0, [mm]\infty][/mm] und g(x)=
> > > [mm]\summe_{n=1}^{\infty}f_{n}(x)[/mm] die Summe der Funktionsreihe
> > > [mm]\summe_{n=1}^{\infty}f_{n}[/mm] ist.
> > >
> > > c) Für welche x [mm]\in \IR[/mm] konvergiert die Reihe
> > > [mm]\summe_{n=1}^{\infty}f'_{n}(x)[/mm] ?
> > > Hallo,
> >
> > Hallo!
> >
> > >
> > > hier die i) zur Korrektur:
> > >
> > > Für punktweise Konvergenz:
> > >
> > >
> >
> [mm]f(x)=\limes_{n\rightarrow\infty}f_{n}(x)=\limes_{n\rightarrow\infty}(\bruch{e^{-nx}}{n^{2}})=0[/mm]
> > > , x [mm]\ge[/mm] 1
> > >
> >
> > Warum nur für [mm]x\ge1[/mm] ? Was ist mit [mm]x\in [0,1][/mm]? Für diese x
> > konvergiert die Funktionenfolge auch punktweise gegen
> > Null.
>
> stimmt den
> [mm]\limes_{n\rightarrow\infty}(\bruch{e^{-nx}}{n^{2}})=0[/mm] für
> x [mm]\in[/mm] [0,1] , weil ja [mm]\bruch{1}{n^{2}}[/mm] eine Nullfolge ist
[mm] e^{-nx} [/mm] ist beschrränkt auf [mm] [0,\infty), [/mm] also insbesondere auch auf [0,1]. Und beschränkte Folge mal Nullfolge ergibt Nullfolge.
>
> >
> >
> > > --> Daraus folgt punktweise konvergent.
> > >
> > > Für gleichmäßige Konvergenz:
> > >
> > > [mm]\limes_{n\rightarrow\infty}[/mm] | [mm]f_{n}(x)[/mm] - f(x)| =
> > > [mm]\limes_{n\rightarrow\infty}[/mm] | [mm](\bruch{e^{-nx}}{n^{2}})[/mm] -
> > > (0) | = 0
> > >
> >
> > Für die glm. Konvergenz musst du die Konvergenz in der
> > Supremumsnorm untersuchen, also [mm]\sup_x |f_n-f|[/mm].
> >
>
> ich habe mir mal den
> http://de.wikipedia.org/wiki/Gleichm%C3%A4%C3%9Fige_Konvergenz
> durchgelesen, um das mit der supremumsnorm zu verstehen.
> irgendwie verstehe ich das doch nicht. also das supremum
> ist ja die obere schranke, also in dem fall das [mm]\infty[/mm]
> oder?
> dann habe ich das doch richtig mit
>
> " [mm]\limes_{n\rightarrow\infty}[/mm] | [mm]f_{n}(x)[/mm] - f(x)| =
> [mm]\limes_{n\rightarrow\infty}[/mm] | [mm](\bruch{e^{-nx}}{n^{2}})[/mm] -
> (0) | = 0 "
Hier hast du doch das gleiche wie bei der pnktw. Konvergenz gemacht!?
Zu betrachten ist der folgende Ausdruck
[mm] $\sup_x |f_n-f|$
[/mm]
Einsetzen der Funktion und der vermuteten Grenzfunktion ergibt
[mm] $\sup_x |\frac{e^{-nx}}{n^2}-0|=\sup_x |\frac{e^{-nx}}{n^2}|$
[/mm]
Jetzt überlege dir für welches [mm] $x\in [0,\infty)$ [/mm] der Ausdruck am größten ist, dann kannst du den Grenzübergang [mm] n\to\infty [/mm] machen.
Gruß Patrick
>
> > Gruß Patrick
> >
> >
> >
> > > Daraus folgt gleichmäßige konvergent.
> > >
> > > Eine kleine Verständnisfrage hier noch: Wenn nicht
> > > ,,Null'' herausgekommen wäre, sondern eine x-beliebige
> > > Zahl, dann wäre hier keine gleichmäßgige Konvergenz
> > > vorhanden, richtig?
> >
>
|
|
|
|