www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Punktsymmetrie
Punktsymmetrie < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punktsymmetrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:23 Mo 01.03.2010
Autor: peeetaaa

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
f(x)={ 1 für x>2
          -xcos(\bruch{1}{6}*\pi*x^4) für |x| \le 2
          -1 für x<-2

Zeigen Sie, dass f(-x)=-f(x) gilt \forall x \in \IR

Hallo,

wollte die Aufgabe lösen aber ich weiß nicht so recht wie ich beweise, dass etwas punktsymmetrisch ist!
kann ich das so machen:
f(-x)+f(x)=0
<=> f(-x)=-f(x)
sodass ich  einfach nen VZW mache?

        
Bezug
Punktsymmetrie: Antwort
Status: (Antwort) fertig Status 
Datum: 22:41 Mo 01.03.2010
Autor: metalschulze

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

> Eingabefehler: "{" und "}" müssen immer paarweise
> auftreten, es wurde aber ein Teil ohne Entsprechung
> gefunden (siehe rote Markierung)
>  
> f(x)={ 1 für x>2
>            -xcos(\bruch{1}{6}*\pi*x^4) für |x| \le 2
>            -1 für x<-2
>  
> Zeigen Sie, dass f(-x)=-f(x) gilt \forall x \in \IR
>  Hallo,
>  
> wollte die Aufgabe lösen aber ich weiß nicht so recht wie
> ich beweise, dass etwas punktsymmetrisch ist!
>  kann ich das so machen:
>  f(-x)+f(x)=0
>  <=> f(-x)=-f(x)

>  sodass ich  einfach nen VZW mache?

Du musst zeigen, dass obige Aussage gilt! Bilde also f(-x) und schau, ob am Ende f(x)*(-1) als Ergebnis steht.

Bezug
                
Bezug
Punktsymmetrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:27 Di 02.03.2010
Autor: peeetaaa

okay sitze immer noch an der Aufgabe

hab jetzt folgendes gemacht:

f(-x)= [mm] x*cos(\bruch{1}{6}\pi*(-x^4)) [/mm]

oder muss das eher heißen:

f(-x)= [mm] x*cos(\bruch{1}{6}\pi*(-x)^4) [/mm]



Bezug
                        
Bezug
Punktsymmetrie: Antwort
Status: (Antwort) fertig Status 
Datum: 16:30 Di 02.03.2010
Autor: fred97


> okay sitze immer noch an der Aufgabe
>  
> hab jetzt folgendes gemacht:
>  
> f(-x)= [mm]x*cos(\bruch{1}{6}\pi*(-x^4))[/mm]

falsch


>  
> oder muss das eher heißen:
>  
> f(-x)= [mm]x*cos(\bruch{1}{6}\pi*(-x)^4)[/mm]

Richtig


FRED

>  
>  


Bezug
                                
Bezug
Punktsymmetrie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:38 Di 02.03.2010
Autor: peeetaaa

f(-x)= [mm] x\cdot{}cos(\bruch{1}{6}\pi\cdot{}(-x)^4) [/mm]

dann folgt aus [mm] (-x)^4= x^4 [/mm]

f(-x)= [mm] x\cdot{}cos(\bruch{1}{6}\pi\cdot{}x^4) [/mm]

und folgt daraus dann:

= (-1)* [mm] (x\cdot{}cos(\bruch{1}{6}\pi\cdot{}x^4) [/mm] )

denn durch das -1 ändert sich das [mm] \cdot{}cos(\bruch{1}{6}\pi\cdot{}x^4) [/mm]  ja eigentlich nicht oder?

und dann wäre das ja punktsymmetrisch

Bezug
                                        
Bezug
Punktsymmetrie: Antwort
Status: (Antwort) fertig Status 
Datum: 16:40 Di 02.03.2010
Autor: fred97


> f(-x)= [mm]x\cdot{}cos(\bruch{1}{6}\pi\cdot{}(-x)^4)[/mm]
>  
> dann folgt aus [mm](-x)^4= x^4[/mm]
>  
> f(-x)= [mm]x\cdot{}cos(\bruch{1}{6}\pi\cdot{}x^4)[/mm]
>  
> und folgt daraus dann:
>  
> = (-1)* [mm](x\cdot{}cos(\bruch{1}{6}\pi\cdot{}x^4)[/mm] )
>  
> denn durch das -1 ändert sich das
> [mm]\cdot{}cos(\bruch{1}{6}\pi\cdot{}x^4)[/mm]  ja eigentlich nicht
> oder?
>  
> und dann wäre das ja punktsymmetrisch

Ja, f ist punktsymmetrisch

Das habe ich Dir auch hier

            https://matheraum.de/read?i=660722

schon mitgeteilt.

FRED

Bezug
        
Bezug
Punktsymmetrie: Formatierung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:40 Di 02.03.2010
Autor: Loddar

Hallo peeetaaa!


Bitte befasse Dich doch auch mal mit dem Formeleditor; insbesondere für fallweise Definitionen. Dir wurde in den letzten Posts Deinerseits das jeweils korrigiert bzw. gezeigt, wie man das formatiert.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]