www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Punkt als Ebene
Punkt als Ebene < Sonstiges < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Punkt als Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:15 Mi 15.07.2015
Autor: sinnlos123

Hallo,

kann ein Punkt durch 3 Punkte beschrieben werden, die unendlich nah beieinander sind, und da ja 3 Punkte ausreichen um eine Ebene zu beschreiben, kann ein Punkt dann eine Ebene beschreiben?

Ob diese Ebene dann definiert (von der Richtung her) ist, ist nicht entscheidend.

        
Bezug
Punkt als Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 10:26 Mi 15.07.2015
Autor: fred97


> Hallo,
>  
> kann ein Punkt durch 3 Punkte beschrieben werden, die
> unendlich nah beieinander sind,

Das ist doch alles mystisch , unpräzise und esoterisch. Mit Mathematik hat das nix zu tun ! Was soll denn "unendlich nah beieinander" bedeuten ??


>  und da ja 3 Punkte
> ausreichen um eine Ebene zu beschreiben, kann ein Punkt
> dann eine Ebene beschreiben?

Na toll ! Wenn ich das nächste mal mit meiner Frau und meiner Tochter Essen gehe, dann setzen wir uns so, dass wir unendlich nah beieinander sind und ich muss nur für eine Person bezahlen. So machen wir das.


>  
> Ob diese Ebene dann definiert (von der Richtung her) ist,
> ist nicht entscheidend.

Ach was ?

FRED


Bezug
                
Bezug
Punkt als Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:33 Mi 15.07.2015
Autor: sinnlos123

Ok, dann anders:

was ist der Unterschied zwischen einem Quadrat mit der Seitenlänge 1/x , bei x [mm] \to \infty [/mm] , und einem Punkt?

Bezug
                        
Bezug
Punkt als Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 10:40 Mi 15.07.2015
Autor: fred97


> Ok, dann anders:
>  
> was ist der Unterschied zwischen einem Quadrat mit der
> Seitenlänge 1/x , bei x [mm]\to \infty[/mm] , und einem Punkt?

Wenn Du mir sagst, wie

"Quadrat mit der Seitenlänge 1/x , bei x [mm]\to \infty[/mm] "

genau definiert ist, bekommst Du von mir eine Antwort.

FRED




Bezug
        
Bezug
Punkt als Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 11:47 Mi 15.07.2015
Autor: Chris84


> Hallo,
>  
> kann ein Punkt durch 3 Punkte beschrieben werden, die
> unendlich nah beieinander sind, und da ja 3 Punkte
> ausreichen um eine Ebene zu beschreiben, kann ein Punkt
> dann eine Ebene beschreiben?

Huhu,
ich verstehe das Problem. Man kann das auch als (doch bekanntes Paradoxon) auffassen:

In der Schule lernt man, dass man einen Punkt brav durch ein Kreuz kennzeichnen soll (und meistens auch so definiert). Nun ist das Problem, dass die Striche eines Kreuzes Stuecke einer Geraden sind, die wiederum aus unendlichen vielen Punkten bestehen: Das Problem ist also, dass man bereits die Definition von Punkten haben muss, um einen Punkt zu definieren!? [Steht das nicht auch irgendwie so in Euklids Elemente oder verwechsel ich da gerade was?] Und mit Hilfe zweier Geraden liesse sich dann eine Ebene aufspannen?

Hilft das irgendwie? Was ist eig. dein konkretes Problem?


>  
> Ob diese Ebene dann definiert (von der Richtung her) ist,
> ist nicht entscheidend.

Gruss,
Chris

Bezug
        
Bezug
Punkt als Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 11:56 Mi 15.07.2015
Autor: abakus


> Hallo,

>

> kann ein Punkt durch 3 Punkte beschrieben werden, die
> unendlich nah beieinander sind, und da ja 3 Punkte
> ausreichen um eine Ebene zu beschreiben, kann ein Punkt
> dann eine Ebene beschreiben?

Natürlich nicht.
JEDE durch drei Punkte bestimmte Ebene, die durch deinen bei dieser Schrumpfkur entstehenden "Grenzwertpunkt" geht, würde auf diesen "Schrumpfpunkt" abgebildet.
Es führen also unendlich viele voneinander verschiedene Ebenen auf diesen Punkt, sodass dieser Punkt nicht eindeutig eine konkrete Ebene bestimmen kann.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]