www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Numerik linearer Gleichungssysteme" - Pseudoinverse
Pseudoinverse < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Pseudoinverse: Idee
Status: (Frage) beantwortet Status 
Datum: 10:56 Sa 26.11.2016
Autor: Laura22

Aufgabe
Eine Matrix [mm] $A^{+} \in \mathbb{R}^{mxn}$ [/mm] zu $A [mm] \in \mathbb{R}^{nxm}$ [/mm] habe die Eigenschaften
[mm] $A^{+}AA^{+} [/mm] = [mm] A^{+}$ [/mm] und [mm] $AA^{+}A [/mm] = A$

Zeige:
(a) [mm] $A^{+}A$ [/mm] ist Projektion,
(b) [mm] $Im(A^{+}A)= Im(A^{+})$, [/mm]
(c) [mm] $Ker(A^{+}A) [/mm] = Ker(A)$

Hallo,

ich habe Probleme mit dem zweiten Teil der Aufgabe. Was ich bisher gemacht habe:

(a) Definiere [mm] $M:=A^{+}A$ [/mm] und zeige [mm] $M^2 [/mm] = M$:
[mm] $M^2 [/mm] = [mm] \underbrace{A^{+}AA^{+}}_{= A^{+}}A [/mm] = [mm] A^{+}A [/mm] = M$.

(b) Meine Ansätze.
[mm] "$\subseteq$": [/mm] ist klar, denn: Betrachte $y [mm] \in Im(A^{+}A)$, [/mm] d.h. [mm] $\exists [/mm] x [mm] \in \mathbb{R}^n: A^{+}\underbrace{Ax}_{= \tilde{x}}=A^{+}\tilde{x} [/mm] = y$, d.h. y [mm] \in Im(A^{+}). [/mm]
[mm] "$\supseteq$": [/mm] ?

Hat jemand einen Tipp wie man die "Teilmengen-Rückrichtung" der (b) zeigen kann? Ich vermute mal stark, dass man die Projektionseigenschaft aus der (a) verwenden muss, aber wie?

Vielen Dank und Gruß,
Laura

        
Bezug
Pseudoinverse: Antwort
Status: (Antwort) fertig Status 
Datum: 11:29 Sa 26.11.2016
Autor: hippias


> Eine Matrix [mm]A^{+} \in \mathbb{R}^{mxn}[/mm] zu [mm]A \in \mathbb{R}^{nxm}[/mm]
> habe die Eigenschaften
>  [mm]A^{+}AA^{+} = A^{+}[/mm] und [mm]AA^{+}A = A[/mm]
>  
> Zeige:
>  (a) [mm]A^{+}A[/mm] ist Projektion,
>  (b) [mm]Im(A^{+}A)= Im(A^{+})[/mm],
>  (c) [mm]Ker(A^{+}A) = Ker(A)[/mm]
>  
> Hallo,
>  
> ich habe Probleme mit dem zweiten Teil der Aufgabe. Was ich
> bisher gemacht habe:
>  
> (a) Definiere [mm]M:=A^{+}A[/mm] und zeige [mm]M^2 = M[/mm]:
>  [mm]M^2 = \underbrace{A^{+}AA^{+}}_{= A^{+}}A = A^{+}A = M[/mm].

O.K.

>  
> (b) Meine Ansätze.
>  "[mm]\subseteq[/mm]": ist klar, denn: Betrachte [mm]y \in Im(A^{+}A)[/mm],
> d.h. [mm]\exists x \in \mathbb{R}^n: A^{+}\underbrace{Ax}_{= \tilde{x}}=A^{+}\tilde{x} = y[/mm],
> d.h. y [mm]\in Im(A^{+}).[/mm]
>  "[mm]\supseteq[/mm]": ?
>  
> Hat jemand einen Tipp wie man die
> "Teilmengen-Rückrichtung" der (b) zeigen kann? Ich vermute
> mal stark, dass man die Projektionseigenschaft aus der (a)
> verwenden muss, aber wie?

Gut vermutet! Ich muss aber auch [mm] $A^{+}AA^{+}= A^{+}$ [/mm] benutzen: wende mal die Projektion [mm] $A^{+}A$ [/mm] auf [mm] $y\in Im(A^{+})$ [/mm] an...

>  
> Vielen Dank und Gruß,
>  Laura


Bezug
                
Bezug
Pseudoinverse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:50 Sa 26.11.2016
Autor: Laura22

Ok, also nach deiner Erklärung muss ich sagen:
Da hätte ich auch echt alleine drauf kommen können... :D

Sei $y [mm] \in Im(A^{+})$ [/mm] beliebig. Dann gibt es $x [mm] \in \mathbb{R}^n$ [/mm] mit y = [mm] A^{+}x [/mm] = [mm] A^{+}AA^{+}x [/mm] = [mm] A^{+}Ay, [/mm]
also y [mm] \in Im(AA^{+}). [/mm]

Den Teil (c) mache ich jetzt noch alleine weiter, ich denke mal, dass der analog gehen wird. Falls ich damit Probleme habe, sag  ich sonst nochmal Bescheid.

Danke sehr!

Bezug
                        
Bezug
Pseudoinverse: Antwort
Status: (Antwort) fertig Status 
Datum: 12:04 Sa 26.11.2016
Autor: M.Rex

Hallo

> Ok, also nach deiner Erklärung muss ich sagen:
> Da hätte ich auch echt alleine drauf kommen können...
> :D

Das ist eine normale Reaktion, wenn man gute Tipps bekommt ;-)

>

> Sei [mm]y \in Im(A^{+})[/mm] beliebig. Dann gibt es [mm]x \in \mathbb{R}^n[/mm]
> mit y = [mm]A^{+}x[/mm] = [mm]A^{+}AA^{+}x[/mm] = [mm]A^{+}Ay,[/mm]
> also y [mm]\in Im(AA^{+}).[/mm]

Das sieht gut aus

>

> Den Teil (c) mache ich jetzt noch alleine weiter, ich denke
> mal, dass der analog gehen wird. Falls ich damit Probleme
> habe, sag ich sonst nochmal Bescheid.

>

> Danke sehr!

Mach das.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]