www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Projektive Veränderungen
Projektive Veränderungen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Projektive Veränderungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:00 Di 29.07.2008
Autor: jaruleking

Hallo, habe mal ne frage.

Wir haben in unserem Skript ein Bsp. einer Parabel: [mm] y=x^2+1. [/mm] Und diese Parabel wird perspektivisch zu einer Ellipse. Die Begründung:

Erst Homogenisiere man das Polynom: [mm] yz=x^2+z^2. [/mm] Dann betrachte man die Karte [mm] y\not=0, [/mm] d.h. y=1. man erhält:

[mm] z=x^2+z^2 \gdw [/mm] 1/4 = [mm] x^2+z^2-z+1/4 \gdw x^2+(z-1/2)^2=(1/2)^2. [/mm] Somit haben wir einen Kreis erhalten.

Ähnlich könnte man auch mit dieser Hyperbel vorgehen: [mm] x^2-y^2+1=0. [/mm] Erst Homogenisieren, d.h. [mm] x^2-y^2+z^2=0. [/mm] Dann betrachten wir wieder die Karte [mm] y\not=0, [/mm] d.h. y=1 und erhalten [mm] x^2+z^2=1 [/mm] und somit wieder eine Ellipse bzw. Kreis.


Jetzt meine Frage, gilt es projektiv immer, dass eine Parabel zur Ellipse wird und das gleiche auch für eine Hyperbel??? Oder ist das nur in diesen Beispielen so??

Danke für hilfe.

Gruß

        
Bezug
Projektive Veränderungen: Antwort
Status: (Antwort) fertig Status 
Datum: 05:00 Mi 30.07.2008
Autor: leduart

Hallo
projektiv kannst du aus jedm Kegelschnitt jeden anderen machen, deshalb sinds ja Kegelschnitte!
gruss leduart

Bezug
                
Bezug
Projektive Veränderungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:32 Mi 30.07.2008
Autor: jaruleking

hi, danke erstmal.

aber wenn ich diese parabel betrachte: [mm] y=x^2. [/mm] also ohne die verschieben mit 1. also hieraus bekomm ich keinen kreis, woran liegt das?

Bezug
                        
Bezug
Projektive Veränderungen: Doch!
Status: (Antwort) fertig Status 
Datum: 10:54 Mi 30.07.2008
Autor: statler

Hi!

> aber wenn ich diese parabel betrachte: [mm]y=x^2.[/mm] also ohne die
> verschieben mit 1. also hieraus bekomm ich keinen kreis,
> woran liegt das?

Projizier diese Parabel mal von (0|-1|1) in die x-z-Ebene, am besten zeichnerisch.

Gruß aus HH-Harburg
Dieter


Bezug
                                
Bezug
Projektive Veränderungen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:12 Mi 30.07.2008
Autor: jaruleking

ja aber irgendwie habe ich es nicht hinbekommen.

habe [mm] y=x^2 [/mm] erstmal homogenisiert, also [mm] zy=x^2, [/mm]

[mm] 0=zy-x^2=(\bruch{y+z}{2})^2-(\bruch{y-z}{2})^2-x^2. [/mm]

wie mache ich jetzt weiter?



Bezug
                                        
Bezug
Projektive Veränderungen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:21 Fr 01.08.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]