www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebraische Geometrie" - Projektiv algebraische Mengen
Projektiv algebraische Mengen < Algebraische Geometrie < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebraische Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Projektiv algebraische Mengen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:39 Di 08.11.2011
Autor: Salamence

Aufgabe
In den folgenden Aufgaben sei der Grundkörper K algebraisch abgeschlossen.
1) Entscheiden Sie, ob eine projektiv algebraische Menge irreduzibel ist, genau dann, wenn ihr definierendes Ideal prim ist.
2) Zeigen Sie, dass das Bild folgender Abbildung eine projektiv algebraische Menge ist und bestimmen Sie Erzeuger eines definierendes Ideals.
[mm] \IP^{m}_{K}\times \IP^{n}_{K}\to \IP^{m*n+m+n}_{K} [/mm]
[mm] ([x_{0}:...:x_{m}], [y_{0}:...:y_{n}])\mapsto [x_{0}*y_{0}:x_{0}*y_{1}:...:x_{0}*y_{n}:x_{1}*y_{1}:...:x_{m}*y_{n}] [/mm]

Hallo!

Also zu 1):
Wir wissen bereits, dass eine affine algebraische Menge irreduzibel ist, genau dann, wenn ihr definierendes Ideal prim ist. Kann man das im Projektiven auf den affinen Fall zurückführen?


Zu 2): Also wenn man das Ideal direkt angeben kann (mit Erzegeugern), dann wird man sicherlich nachrechnen können, dass das Bild gerade die Nullstellenmenge dieses Ideales ist, doch wie finde ich die Erzeuger eines solchen Ideales?

        
Bezug
Projektiv algebraische Mengen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:25 Do 10.11.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Projektiv algebraische Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:53 Do 10.11.2011
Autor: felixf

Moin!

> In den folgenden Aufgaben sei der Grundkörper K
> algebraisch abgeschlossen.
> 1) Entscheiden Sie, ob eine projektiv algebraische Menge
> irreduzibel ist, genau dann, wenn ihr definierendes Ideal
> prim ist.
> 2) Zeigen Sie, dass das Bild folgender Abbildung eine
> projektiv algebraische Menge ist und bestimmen Sie Erzeuger
> eines definierendes Ideals.
>  [mm]\IP^{m}_{K}\times \IP^{n}_{K}\to \IP^{m*n+m+n}_{K}[/mm]
>  
> [mm]([x_{0}:...:x_{m}], [y_{0}:...:y_{n}])\mapsto [x_{0}*y_{0}:x_{0}*y_{1}:...:x_{0}*y_{n}:x_{1}*y_{1}:...:x_{m}*y_{n}][/mm]

Zu 2): bezeichne die Koordinate von [mm] $\mathbb{P}^{m*n+m+n}$, [/mm] in der [mm] $x_i y_j$ [/mm] steht, mit [mm] $z_{ij}$. [/mm] Dann gilt doch [mm] $z_{ij} z_{k\ell} [/mm] = [mm] z_{i\ell} z_{kj}$ [/mm] fuer alle [mm] $[z_{00} [/mm] : [mm] \dots [/mm] : [mm] z_{mn}]$ [/mm] im Bild. Zeige, dass diese Relationen das Bild erzeugen.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebraische Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]