Projektion ueber product space < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei [mm] $\{(X_{i} , \tau_{i} ) | i \in I \}$ [/mm] eine Familie von topologischen Räumen und sei [mm] $\produkt_{i \in I} X_i [/mm] $ die bezügliche Produkttopologie.
Zeige, dass die Projektionen [mm] $p_i [/mm] : [mm] \produkt_{i \in I} X_i \to X_i$ [/mm] offene Funktionen sind. |
Bei uns im Buch steht:
Wir wissen dass [mm] $p_i$ [/mm] surjektiv für jedes $i$ ist.
Ausserdem ist das Urbild [mm] $p_j^{-1}(U_j)$ [/mm] für jedes offene [mm] $U_j \in \Tau_j$ [/mm] ein Element einer Subbasis der Produkttopologie.
Und für jedes [mm] $U_j$ [/mm] gilt:
$$ [mm] p_i(p_j^{-1}(U_j)) [/mm] = [mm] \begin{cases} U_i, i=j \\ X_i, i \not= j \end{cases} [/mm] $$
Aber ich kann das irgendwie nicht alles zusammenführen:
[mm] $p_i$ [/mm] ist surjektiv, also erreiche ich mit [mm] $p_i^{-1}(U_j)$ [/mm] alle offenen Mengen in [mm] $\tau_j$. [/mm]
So nun ist [mm] $p_i^{-1}(U_j)$ [/mm] ein Element einer Subbasis. Also kann ich mit beliebigen Vereinigungen von endlichen Schnitten aus Elementen der Subbasis alle Elemente von der Produkttopologie bilden.
Reicht es aus diesem Grund aus zu überprüfen, ob das Bild von [mm] $p_i^{-1}(U_j)$ [/mm] in [mm] $p_i$ [/mm] offen ist?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:30 Mo 09.04.2012 | Autor: | tobit09 |
Hallo nureinmal,
> Bei uns im Buch steht:
>
> Wir wissen dass [mm]p_i[/mm] surjektiv für jedes [mm]i[/mm] ist.
> Ausserdem ist das Urbild [mm]p_j^{-1}(U_j)[/mm] für jedes offene
> [mm]U_j \in \Tau_j[/mm] ein Element einer Subbasis der
> Produkttopologie.
> Und für jedes [mm]U_j[/mm] gilt:
>
> [mm]p_i(p_j^{-1}(U_j)) = \begin{cases} U_i, i=j \\ X_i, i \not= j \end{cases}[/mm]
Dem Autor unterlaufen hier offensichtlich zwei Fehler:
1. Die Surjektivität von [mm] $p_i$ [/mm] und die angegebene Darstellung von [mm] $p_i(p_j^{-1}(U_j))$ [/mm] stimmen nur im Falle [mm] $X_j\not=\emptyset$ [/mm] für alle [mm] $j\in [/mm] I$.
2. Es reicht zwar, die Offenheit von [mm] $p_i$ [/mm] anhand einer Basis des Produktraumes zu überprüfen; eine Untersuchung der Bilder einer SUBbasis genügt jedoch nicht.
Wenn du die Offenheit von [mm] $p_i$ [/mm] korrekt zeigen möchtest, solltest du also eine Basis der Produkttopologie betrachten. Eine solche Basis wird z.B. gebildet von den Mengen der Form
[mm] $p_i^{-1}(U_i)\cap p_{j_1}^{-1}(U_{j_1})\cap\ldots\cap p_{j_n}^{-1}(U_{j_n})$
[/mm]
für [mm] $n\in\IN_0$, $j_1,\ldots,j_n\in [/mm] I$ verschieden von $i$ und [mm] $U_{j_k}\subseteq X_{j_k}$ [/mm] offen für [mm] $k=1,\ldots,n$.
[/mm]
Viele Grüße
Tobias
|
|
|
|