www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Projektion
Projektion < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Projektion: Projetion Vektor auf Unterraum
Status: (Frage) beantwortet Status 
Datum: 17:20 So 09.10.2016
Autor: PeterSteiner

Aufgabe
Berechnen Sie die Projetion des Vektors [mm] v=\vektor{1 \\ -2 \\ 3} [/mm] auf den Vektoren [mm] u_1=\vektor{\bruch{1}{\wurzel{2}} \\ 0 \\ \bruch{1}{\wurzel{2}}} [/mm] und [mm] u_2=\vektor{\bruch{1}{\wurzel{3}} \\ \bruch{1}{\wurzel{3}} \\ -\bruch{1}{\wurzel{3}}} [/mm] aufgespannten Unterraum des [mm] \IR^3 [/mm]

Leider komme ich bei dieser Aufgabe so garnicht klar wenn ich mir die Lösungen (siehe Anhang betrachte).

Kann ich diese Aufgabe nicht mit folgender Formel lösen?

[mm] p=\bruch{}{|u_1|^2}*u_1+\bruch{}{|u_2|^2}*u_2 [/mm]


[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: PNG) [nicht öffentlich]
        
Bezug
Projektion: Antwort
Status: (Antwort) fertig Status 
Datum: 00:10 Mo 10.10.2016
Autor: HJKweseleit

Der Gesamtvektor hinter der geschweiften Klammer hat den Wert [mm] \vektor{\bruch{2}{3} \\ \bruch{-4}{3}\\ \bruch{10}{3}}. [/mm]

Er wurde genau nach deiner Formel berechnet und ist richtig.

Danach folgt offenbar ein zweiter Rechenweg, mit dem man zum selben Ergebnis gelangen kann.

Bezug
                
Bezug
Projektion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:41 Mo 10.10.2016
Autor: PeterSteiner

Danke für deine Antwort,
leider kann ich dann die alternative Lösung nicht nachvollziehen. Der Lösungsvektor ist doch vollkommen anders.
Warum wurde das Kreuzprodukt zur Berechnung verwendet ?

Bezug
                        
Bezug
Projektion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:07 Mo 10.10.2016
Autor: fred97


>  Danke für deine Antwort,
>  leider kann ich dann die alternative Lösung nicht
> nachvollziehen. Der Lösungsvektor ist doch vollkommen
> anders.

Das Blatt welches Du eingescant hast ist unten abgeschnitten, man kann also nicht alles lesen.


>  Warum wurde das Kreuzprodukt zur Berechnung verwendet ?

Ist U der von [mm] u_1 [/mm] und [mm] u_2 [/mm] aufgespannte Unterraum, so wird zunächst das ortogonale Komplement [mm] U^{\perp} [/mm] von U bestimmt.

Ist [mm] $u_3=u_1 \times u_2$, [/mm] so hat man

     [mm] U^{\perp}=span(u_3) [/mm]

und damit

[mm] $\IR^3=U \oplus U^{\perp}$ [/mm]




Bezug
                                
Bezug
Projektion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:21 Mo 10.10.2016
Autor: PeterSteiner

Hallo danke für deine Antwort. Da wo das Blatt angeschnitten ist hört die Lösung auf.
Ok aber wie komme ich mit dem Kreuzprodukt auf das selbe Ergebnis wie bei der eingangs erwähnten Formel ?

Bezug
                                        
Bezug
Projektion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:26 Mo 10.10.2016
Autor: leduart

Hallo
[mm] u_1\times u_2 [/mm] steht senkrecht auf der Ebene, wenn du von v die Komponente in Richtung des Kreuzproduktes abziehst, bleibt die Komponente senkrecht dazu, also die in der Ebene.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]