www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Produkttopologie
Produkttopologie < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Produkttopologie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:50 Sa 09.07.2011
Autor: Braten

Hallo,

Ich habe eine Frage bezüglich der Produkttopologie auf dem kartesischen Produkt von top. Räumen [mm] X_1 \times [/mm] ... [mm] \times X_n [/mm]

1)
Gilt in endl. kartesischen Produkten stets diese Aussage:
U [mm] \subset X_1 \times [/mm] ... [mm] \times X_n [/mm] offen <=> U= [mm] U_1 \times [/mm] ... [mm] \times U_n [/mm] mit [mm] U_i [/mm] offen in [mm] X_i [/mm] ?

2)
Ich glaube in unendlichen Produkten gilt das nicht. Warum nicht?

Liebe Grüße

        
Bezug
Produkttopologie: Antwort
Status: (Antwort) fertig Status 
Datum: 16:11 Sa 09.07.2011
Autor: felixf

Moin!

> Ich habe eine Frage bezüglich der Produkttopologie auf dem
> kartesischen Produkt von top. Räumen [mm]X_1 \times[/mm] ... [mm]\times X_n[/mm]
>  
> 1)
>  Gilt in endl. kartesischen Produkten stets diese Aussage:
>  U [mm]\subset X_1 \times[/mm] ... [mm]\times X_n[/mm] offen <=> U= [mm]U_1 \times[/mm]

> ... [mm]\times U_n[/mm] mit [mm]U_i[/mm] offen in [mm]X_i[/mm] ?

Das ist Falsch, es gilt nur die Implikation [mm] "$\Leftarrow$". [/mm]

Betrachte z.B. eine [mm] $\varepsilon$-Umgebung [/mm] der Diagonalen [mm] $\{ (x, x) \mid x \in \IR \}$ [/mm] in [mm] $\IR^2$. [/mm] Diese ist offen, kann jedoch nicht als direktes Produkt $A [mm] \times [/mm] B$ mit $A, B [mm] \subseteq \IR$ [/mm] geschrieben werden.

> 2)
>  Ich glaube in unendlichen Produkten gilt das nicht. Warum
> nicht?

Weil es in endlichen Produkten bereits nicht gilt.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]