www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Produktmetrik
Produktmetrik < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Produktmetrik: Tipp
Status: (Frage) beantwortet Status 
Datum: 23:14 Di 05.05.2009
Autor: T_sleeper

Aufgabe
[mm] n\in\mathbb{N} [/mm] und [mm] (X_{k},d_{k}),k=1...n, [/mm] metrische Räume. Für [mm] x\in [/mm] X ist [mm] x=(x_{1},...,x_{n}),x_{k}\in X_{k}. [/mm]

(a) Ich soll zeigen, dass folgende Definition eine Metrik auf X ist:

[mm] d^{(n)}(x,y):=\overset{n}{\underset{k=1}{\sum}}\frac{1}{2^{k}}\frac{d_{k}(x_{k},y_{k})}{1+d_{k}(x_{k},y_{k})},\, x_{k},y_{k}\in X_{k}. [/mm]

(b) Gilt dies auch für [mm] n=\infty [/mm] ?

Hallo,

d(x,y)=0 [mm] \Leftrightarrow [/mm] x=y und Symmetrie habe ich bereits gezeigt. Hapern tut es lediglich bei der Dreiecksungleichung. Damit komme ich nicht weiter.

Zu (b) habe ich mir bisher nur gedacht, dass das vermutlich nicht gilt, weiß aber auch nicht, wie ich es beweisen kann.



        
Bezug
Produktmetrik: Antwort
Status: (Antwort) fertig Status 
Datum: 01:02 Mi 06.05.2009
Autor: pelzig

a) Der Punkt ist, dass wenn du eine Metrik [mm] $d:X^2\to\IR$ [/mm] und eine monotone konkave Funtion [mm] $f:[0,\infty)\to\IR$ [/mm] hast mit $f(0)=0$, dann ist [mm] $f\circ [/mm] d$ wieder eine Metrik. In dieser Aufgabe hat [mm] $f(x)=\frac{x}{1+x}$ [/mm] genau diese Eigenschaften. Damit ist [mm] $d^{(n)}(x,y)=\sum_{k=1}^n 2^{-k}\cdot(f\circ d_k)(x_k,y_k)$ [/mm] - also eine Linearkombination von Metriken und damit eine Metrik.

b) Alles was hier zu zeigen ist, dass die Reihe konvergiert. Es gilt aber [mm] $f\circ [/mm] d<1$ für jede Metrik d, also wird [mm] $d^{(\infty)}$ [/mm] majorisiert durch [mm] $\sum_{k\ge 1}2^{-k}<\infty$. [/mm] Die Metrikeigenschaften von [mm] $d^{\infty}$ [/mm] gelten für jede Partialsumme (das ist Aufgabe a)) und gehen durch den Grenzübergang nicht kaputt....

Gruß, Robert

Bezug
                
Bezug
Produktmetrik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:18 Mi 06.05.2009
Autor: T_sleeper


> b) Alles was hier zu zeigen ist, dass die Reihe
> konvergiert. Es gilt aber [mm]f\circ d<1[/mm] für jede Metrik d,
> also wird [mm]d^{(\infty)}[/mm] majorisiert durch [mm]\sum_{k\ge 1}2^{-k}<\infty[/mm].
> Die Metrikeigenschaften von [mm]d^{\infty}[/mm] gelten für jede
> Partialsumme (das ist Aufgabe a)) und gehen durch den
> Grenzübergang nicht kaputt....
>  
> Gruß, Robert

Dann gilt es also für [mm] n=\infty [/mm] auch?


Bezug
                        
Bezug
Produktmetrik: Antwort
Status: (Antwort) fertig Status 
Datum: 01:20 Mi 06.05.2009
Autor: SEcki


> Dann gilt es also für [mm]n=\infty[/mm] auch?

Ja.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]