www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Produktintegration
Produktintegration < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Produktintegration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:25 Do 21.09.2006
Autor: Phoenix012

Aufgabe
Zeigen Sie, dass für alle $m,n [mm] \in \IN$ [/mm] folgende Beziehungen gelten:

[mm] $\integral_{-\pi}^{\pi}{\sin (mx) * \sin (nx) dx} [/mm] =  [mm] \integral_{-\pi}^{\pi}{\cos (mx) * \cos (nx) dx} [/mm] =  [mm] \begin{cases} 0, & \mbox{für } n\not=m \\ \pi, & \mbox{für } n=m \end{cases}$ [/mm]

Mein Problem ist, wie ich das genau ausrechne.
Es muss per Produktintegration (partieller Integration) gehen, aber wie?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Produktintegration: Antwort
Status: (Antwort) fertig Status 
Datum: 00:17 Fr 22.09.2006
Autor: leduart

Hallo Phoenix
Du musst hier keine Stammfunktion ausrechne, sondern wirklich nur mit den Grenzen argumentieren.
cosmxcosnx-sinmxsinnx=cos(m+n)x
das von [mm] -\pi [/mm] bis [mm] +\pi [/mm] ist Null, argumentiere mit der Periode! Aufzeichnen!deshalb sind die Integrale erstmal gleich.
Wieder mit den Perioden argumentiert sind sie auch0, (gleichviel pos wie negative Kurvenstücke, die gleich sind.)
Nur [mm] sin^{2}nx [/mm] ist immer positiv, deshalb ist das Integral ungleich 0.
am einfachsten durch [mm] sin^{2}nx [/mm] =0,5*(1-cos2nx) ersetzen, cos{2}nx=0,5*(1+cos2nx)
Gruss leduart



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]