www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Produkt zweier unstetiger Fktn
Produkt zweier unstetiger Fktn < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Produkt zweier unstetiger Fktn: Tipp
Status: (Frage) beantwortet Status 
Datum: 22:22 Mi 11.01.2012
Autor: fagottator

Aufgabe
Beweisen oder widerlegen (Gegenbeispiel) Sie folgende Aussagen:

b) Jede stetige, beschränkte Funktion auf [mm] $(-\infty, \infty)$ [/mm] nimmt ihr Maximum/Minimum an.

Hallo zusammen,

ich bräuchte mal Hilfe bei dieser Aufgabe.

Sehe ich das richtig, dass ein Gegenbeispiel hierfür ein konstante Funktion wär? Diese ist stetig und beschränkt, nimmt auf [mm] $(-\infty,\infty)$ [/mm] jedoch weder ein Maximum noch ein Minimum an, da diese nicht existieren. Für ein Maximum x müssten doch Werte kleiner als x kleiner und Werte größer x größer als der Wert für x sein, oder?

LG fagottator


        
Bezug
Produkt zweier unstetiger Fktn: Antwort
Status: (Antwort) fertig Status 
Datum: 23:42 Mi 11.01.2012
Autor: reverend

Hallo fagottator,

> Beweisen oder widerlegen (Gegenbeispiel) Sie folgende
> Aussagen:
>
> b) Jede stetige, beschränkte Funktion auf [mm](-\infty, \infty)[/mm]
> nimmt ihr Maximum/Minimum an.
>  Hallo zusammen,
>  
> ich bräuchte mal Hilfe bei dieser Aufgabe.
>  
> Sehe ich das richtig, dass ein Gegenbeispiel hierfür ein
> konstante Funktion wär? Diese ist stetig und beschränkt,
> nimmt auf [mm](-\infty,\infty)[/mm] jedoch weder ein Maximum noch
> ein Minimum an, da diese nicht existieren. Für ein Maximum
> x müssten doch Werte kleiner als x kleiner und Werte
> größer x größer als der Wert für x sein, oder?

Nein. Lies mal die übliche []Definition.
Eine konstante Funktion hat an jeder Stelle ein lokales und globales Minimum bzw. Maximum.

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]