www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Produkt/Quotienten/Kettenregel
Produkt/Quotienten/Kettenregel < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Produkt/Quotienten/Kettenregel: Korrektur
Status: (Frage) beantwortet Status 
Datum: 00:13 Mi 10.06.2009
Autor: la_vida

Hallo mal wieder,
wir haben in der Schule jetzt die im Betreff genannten Ableitungsregeln gelernt und ich bin noch ziemlich unsicher damit. Hab meine Hausaufgabe gemacht und jetzt würde ich gerne wissen, ob alles richtig ist, bzw. was ich falsch gemacht habe.
Es wäre echt toll, wenn sich jemand von euch die Zeit nimmt drüber zu schauen. :-)

f(x)=sin(2x+1)
f'(x)=cos(2x+1)*2
f''(x)=2(-sinx)(2x+1)*2

f(x)=cos(3x-2)
f'(x)=-sin(3x-2)*3
f''(x)=3sin(3x-2)*3

[mm] f(x)=\wurzel{x²+1} [/mm]
[mm] f'(x)=1/(2*\wurzel{x²+1})*2x [/mm]

f(x)=x*sinx
f'(x)=1*sinx+x*cosx

f(x)=x²/(x²+1)
f'(x)=(2x*(x²+1)-x²*2x)/(x²+1)²
f''(x)=(2*(x²+1)+2x*2x-2x*2x+x²*2)/(2*(x²+1)*2x)
      =(2(x²+1)+2x²/((x²+1)*4x)

[mm] f(x)=\wurzel{x}/sinx [/mm]
[mm] f'(x)=(1/2\wurzel{x}*sinx-\wurzel{x}*cosx)/(sinx)² [/mm]

Wenn da jetzt allzu dämliche Fehler drin sind, schieben wir das doch bitte auf die leicht fortgeschrittene Stunde ;-)
Danke schonmal!

# Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Produkt/Quotienten/Kettenregel: Antwort
Status: (Antwort) fertig Status 
Datum: 00:33 Mi 10.06.2009
Autor: MathePower

Hallo la_vida,

> Hallo mal wieder,
>  wir haben in der Schule jetzt die im Betreff genannten
> Ableitungsregeln gelernt und ich bin noch ziemlich unsicher
> damit. Hab meine Hausaufgabe gemacht und jetzt würde ich
> gerne wissen, ob alles richtig ist, bzw. was ich falsch
> gemacht habe.
> Es wäre echt toll, wenn sich jemand von euch die Zeit nimmt
> drüber zu schauen. :-)
>  
> f(x)=sin(2x+1)
>  f'(x)=cos(2x+1)*2
>  f''(x)=2(-sinx)(2x+1)*2


Hier muß es heißen:

[mm]f''\lexft(x\right)=2*\left(-\sin\left(2x+1\right)\right)*2[/mm]



>  
> f(x)=cos(3x-2)
>  f'(x)=-sin(3x-2)*3
>  f''(x)=3sin(3x-2)*3


[ok]


>  
> [mm]f(x)=\wurzel{x²+1}[/mm]
>  [mm]f'(x)=1/(2*\wurzel{x²+1})*2x[/mm]


[ok]


>  
> f(x)=x*sinx
>  f'(x)=1*sinx+x*cosx


[ok]


>  
> f(x)=x²/(x²+1)
>  f'(x)=(2x*(x²+1)-x²*2x)/(x²+1)²


[ok]


>  f''(x)=(2*(x²+1)+2x*2x-2x*2x+x²*2)/(2*(x²+1)*2x)
>        =(2(x²+1)+2x²/((x²+1)*4x)


Das musst Du nochmal nachrechnen.


>  
> [mm]f(x)=\wurzel{x}/sinx[/mm]
>  [mm]f'(x)=(1/2\wurzel{x}*sinx-\wurzel{x}*cosx)/(sinx)²[/mm]


[ok]


>  
> Wenn da jetzt allzu dämliche Fehler drin sind, schieben wir
> das doch bitte auf die leicht fortgeschrittene Stunde ;-)
>  Danke schonmal!
>  
> # Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>


Gruß
MathePower  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]