www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Matlab" - Probleme mit Matlab
Probleme mit Matlab < Matlab < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Matlab"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Probleme mit Matlab: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:13 Di 08.01.2013
Autor: fmath

Aufgabe
% =====================================================================
% Testerregung eines nichtlinearen Schwingers mit Frequenzdurchstimmung
% in MATLAB/SIMULINK V. 6
% ------------- Beispiel: Nichtlineare Rueckstellkraft ----------------% =====================================================================
% --- Definition der Parameter, auf die im Modell zugegriffen wird
% ----------------------------------------------------------------% --- Modellparameter
global theta k0 m xF Frest ap fexc i j % notwendig fuer ODE-Funktion
f0 = 1; % Eigenfrequenz (lin. System)
theta = 0.05; % Daempfungsmass
xmax = 5; % max. Resonatoramplitude
n = 100; % Anzahl der Stuetzstellen fuer
% nichtlin. Kraft-Weg-Funktion
dxF = 2*xmax/n; % Stuetzstellenabstand
xF = [ -xmax : dxF : xmax ]’; % Stuetzstellen (x-Werte)
k = (xF.^2-0.2)./(2*xF.^4+1) + 1.2; % differ. Federsteifigkeit k(x)
% (Funktion hier willkuerlich)
k0 = k(n/2+1); % k(x=0)
m = [mm] k0/(2*pi*f0)^2; [/mm] % Resonatormasse
Frest = zeros(n+1,1); % Federkraftfunktion durch
for i=2:n+1 % Integration der differentiellen
Frest(i) = Frest(i-1) + k(i)*dxF; % Steifigkeit ueber x
end
Frest = Frest - Frest(n/2+1);
% --- Erregungsparameter
ap = [ xmax/10: xmax/10 : xmax [mm] ]*2*theta*(2*pi*f0)^2; [/mm]
% Spitzenbeschleunigungen
% (=Kurvenparameter)
fexc = [ 0.5:0.025:0.975 1.0:0.01:1.2 1.225:0.025:1.5 ];
% Erregerfrequenzen
fexc = [ fexc fliplr(fexc) ]; % Erweiterung um Ruecklauf
fexc = fexc’;
% --- Erregungsfunktion als Stringvariable (notw. fuer SIM-Befehl)
aexc = ’ ap(j)*sin(2*pi*fexc(i)*t) ’;
% --- Schleifeninitialisierung
% ----------------------------nstep = length(fexc) % Anzahl der Frequenzschritte
nparam = length(ap) % Anzahl der Kurven
cycles = 2*ceil(1/(2*theta)); % Perioden pro Frequenzschritt
% (mindestens Einschwingzeit!)
ANHANG A BERECHNUNG IN MATLAB/SIMULINK 139
xic = 0; % Anfangsbedingung Weg x0
vic = 0; % Anfangsbedingung Geschwind. v0
% Auf ’xic’ und ’vic’ wird von den Integratoren des SIMULINK-Modells
% zugegriffen.
ppp = 100; % Ausgabezeitpunkte pro Periode
xcol = 1; % x-Spalte des ’simout’-Arrays
vcol = 2; % v-Spalte des ’simout’-Arrays
% Im Vektor ’simout’ (s.u.) gibt das Modell die Resonatorschwingung des
% gesamten Einschwingvorganges zurueck (=Ausgangsports [mm] ’x_r’ [/mm] und [mm] v_r’). [/mm]
useode = 0; % 0 - verwende SIMULINK-Modell
% 1 - verwende ODE-Funktion
% --- Vektoren zur Speicherung des Amplituden- und Phasenganges
xp = zeros(nstep,nparam); % Spitzenwerte
xp1 = zeros(nstep,nparam); % Spitzenwerte 1. Harmonische
phi1 = zeros(nstep,nparam); % Phasen 1. Harmonische
xrms = zeros(nstep,nparam); % RMS-Werte
% --- Schleife mit Modellaufruf
% -----------------------------for j=1:nparam % Parameter-Schleife
for i=1:nstep % Frequenz-Schleife
disp([ ap(j) fexc(i) ]) % Fortschrittsanzeige
Tsim = cycles/fexc(i); % Gesamtzeit pro Frequenzschritt
dtout = 1/(ppp*fexc(i)); % Abstand der Ausgabezeitpunkte
dtsolv = dtout; % Max. Solver-Zeitschritt
Tvec = [ 0 : dtout : Tsim ]; % Ausgabezeitpunkte
if useode==0
% --- SIMULINK-Modellaufruf
OPTIONS = simset(’Solver’,’ode45’, ...
’Reltol’,1e-3, ...
’MaxStep’,dtsolv, ...
’InitialStep’,dtsolv/10 );
[t,temp,simout] = sim(’nonlinear_restoring’,Tvec,OPTIONS,aexc);
% Ruft das SIMULINK-Modell ’nonlinear_restoring.mdl’ auf.
else
% --- Alternative: ODE-Funktion
OPTIONS = odeset(’Reltol’,1e-3, ...
’MaxStep’,dtsolv, ...
’InitialStep’,dtsolv/10 );
[t,simout] = ode45( ’nonlinear_restoring’, Tvec, [xic vic], ...
OPTIONS );
% Ruft die ODE-Funktion ’nonlinear_restoring.m’ auf.
end
% --- Auswertung und Speicherung
outlen = length(t); % Anzahl der Ausgabezeitpunkte
lastcyc = simout(outlen-ppp+1:outlen,xcol); % x(t) letzte Periode
140 ANHANG A BERECHNUNG IN MATLAB/SIMULINK
% --- Spitzenwert
xp(i,j) = ( max(lastcyc) - min(lastcyc) ) / 2;
% --- Amplitude und Phase der 1. Harmonischen durch FFT
fftvect = fft(lastcyc)*2/ppp;
xp1(i,j) = abs(fftvect(2));
phi1(i,j) = angle( fftvect(2) )*180/pi + 90;
% --- RMS-Wert
xrms(i,j) = sqrt( sum(lastcyc.^2)/ppp );
% --- Endwerte als Anfangsbedingungen fuer naechsten Frequenzschritt
% sichern
xic = simout(outlen,xcol);
vic = simout(outlen,vcol);
end
% --- Ergebnisse in Datei ’rescurves.mat’ speichern
save rescurves fexc xp xp1 phi1 xrms
end
% --- Diagramm
% ------------figure(1)
clf
subplot(2,1,1)
hold on
plot(fexc, xp, ’.’)
plot(fexc, xp1, ’-’)
xlabel(’Frequenz’)
ylabel(’Amplitude’)
subplot(2,1,2)
plot(fexc, phi1, ’-’)
xlabel(’Frequenz’)
ylabel(’Phasenwinkel’)
ANHANG A BERECHNUNG IN MATLAB/SIMULINK 141
ODE-Funktion ’nonlinear_restoring.m’:
function dxdt = nonlinear_restoring(t,x);
% =====================================================================
% Differentialgleichung mit nichtlinearer Rueckstellkraft und
% Sinuserregung.
% Die Rueckstellkraft F_restoring(x) wird aus dem Look-up-Table ’Frest’
% durch lineare Interpolation an der Stelle x gewonnen.
% =====================================================================
global theta k0 m xF Frest ap fexc i j
w0 = sqrt(k0/m); % omega0
% --- Differentialgleichung 2. Ordnung umgeformt in System 1. Ordnung
dxdt = [ x(2)
-2*theta*w0*x(2) - interp1(xF,Frest,x(1))/m ...
- ap(j)*sin(2*pi*fexc(i)*t)
];

Hallo,

Habe diese Frage in keinen anderen Forum gestellt.

Ich bin Anfänger in Matlab und sollte dieses Program durchführen, nur verstehe ich leider nicht viel davon es ist mir zu lang; hätte jemand eine Idee wie ich es durchgehen könnte um es besser zu verstehen? oder könnte mir Irgendjemand dabei helfen?

Danke euch

Fmath

        
Bezug
Probleme mit Matlab: Dokumentation ?
Status: (Antwort) fertig Status 
Datum: 19:55 Di 08.01.2013
Autor: Al-Chwarizmi

Hallo Fmath,

einen vorliegenden Programmtext, dessen Aufgabe und
Ziel man nicht schon aus dem Zusammenhang und aus
einer guten Dokumentation kennt, zu entziffern und zu
verstehen, ist oft ähnlich schwierig wie das Entziffern
von Hjerroglühfen ...  ;-)

Wenn du hier nichts als diesen Programmtext anzubieten
hast, wird dir nur eher schwerlich jemand bei dieser
Arbeit behilflich sein ...

Ferner ist dieses Programm als eine "Anfänger-Übung"
in Matlab vielleicht doch schon eine Nummer zu groß.

LG,   Al-Chwarizmi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Matlab"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]