www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Problem mit Ungleichung...!
Problem mit Ungleichung...! < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Problem mit Ungleichung...!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:39 So 28.06.2009
Autor: Morpheus87

Gegeben sei die Ungleichung 2-|1-x| [mm] \ge [/mm] 1+x.

1. Fall: Sei 1-x [mm] \ge [/mm] 0 [mm] \gdw [/mm] x [mm] \le [/mm] 1 , dann gilt 2-1-x [mm] \ge [/mm] 1+x [mm] \gdw [/mm] 1-x [mm] \ge [/mm] 1+x [mm] \gdw [/mm] 2x [mm] \le [/mm] 0 [mm] \gdw [/mm] x [mm] \le [/mm] 0. Eine Teillösung ist damit x [mm] \le [/mm] 0.
2. Fall: Sei 1-x < 0 [mm] \gdw [/mm] x > 1. dann gilt 2-(-(1-x) [mm] \ge [/mm] 1+x [mm] \gdw [/mm] 2-(-1+x) [mm] \ge [/mm] 1+x [mm] \gdw [/mm] 2+1-x [mm] \ge [/mm] 1+x [mm] \gdw [/mm] 3-x [mm] \ge [/mm] 1+x [mm] \gdw [/mm] 2x [mm] \le [/mm] 2 [mm] \gdw [/mm] x [mm] \le [/mm] 1. Es gilt also x [mm] \le [/mm] 1 und x > 1. Dies ist eine widersprüchliche Aussage. Als Lösungsmenge erhalte ich dann L = [mm] \{x \in \IR | x \le 0\} [/mm] . Was mache ich falsch?
Denn die Lösung ist L = [mm] \{x \in \IR | x \le 1\} [/mm]


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Problem mit Ungleichung...!: Antwort
Status: (Antwort) fertig Status 
Datum: 22:50 So 28.06.2009
Autor: fencheltee


> Gegeben sei die Ungleichung 2-|1-x| [mm]\ge[/mm] 1+x.
>  
> 1. Fall: Sei 1-x [mm]\ge[/mm] 0 [mm]\gdw[/mm] x [mm]\le[/mm] 1 , dann gilt 2-1x [mm]\ge[/mm]

die klammer ist falsch aufgelöst worden ;-)

> 1+x [mm]\gdw[/mm] 1-x [mm]\ge[/mm] 1+x [mm]\gdw[/mm] 2x [mm]\le[/mm] 0 [mm]\gdw[/mm] x [mm]\le[/mm] 0. Eine
> Teillösung ist damit x [mm]\le[/mm] 0.
>  2. Fall: Sei 1-x < 0 [mm]\gdw[/mm] x > 1. dann gilt 2-(-(1-x) [mm]\ge[/mm]

> 1+x [mm]\gdw[/mm] 2-(-1+x) [mm]\ge[/mm] 1+x [mm]\gdw[/mm] 2+1-x [mm]\ge[/mm] 1+x [mm]\gdw[/mm] 3-x [mm]\ge[/mm]
> 1+x [mm]\gdw[/mm] 2x [mm]\le[/mm] 2 [mm]\gdw[/mm] x [mm]\le[/mm] 1. Es gilt also x [mm]\le[/mm] 1 und x
> > 1. Dies ist eine widersprüchliche Aussage. Als Lösungsmenge
> erhalte ich dann L = [mm]\{x \in \IR | x \le 0\}[/mm] . Was mache
> ich falsch?
>  Denn die Lösung ist L = [mm]\{x \in \IR | x \le 1\}[/mm]
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Problem mit Ungleichung...!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:52 So 28.06.2009
Autor: Morpheus87


> > Gegeben sei die Ungleichung 2-|1-x| [mm]\ge[/mm] 1+x.
>  >  
> > 1. Fall: Sei 1-x [mm]\ge[/mm] 0 [mm]\gdw[/mm] x [mm]\le[/mm] 1 , dann gilt 2-1x [mm]\ge[/mm]
> die klammer ist falsch aufgelöst worden ;-)
>  > 1+x [mm]\gdw[/mm] 1-x [mm]\ge[/mm] 1+x [mm]\gdw[/mm] 2x [mm]\le[/mm] 0 [mm]\gdw[/mm] x [mm]\le[/mm] 0. Eine

> > Teillösung ist damit x [mm]\le[/mm] 0.
>  >  2. Fall: Sei 1-x < 0 [mm]\gdw[/mm] x > 1. dann gilt 2-(-(1-x)

> [mm]\ge[/mm]
> > 1+x [mm]\gdw[/mm] 2-(-1+x) [mm]\ge[/mm] 1+x [mm]\gdw[/mm] 2+1-x [mm]\ge[/mm] 1+x [mm]\gdw[/mm] 3-x [mm]\ge[/mm]
> > 1+x [mm]\gdw[/mm] 2x [mm]\le[/mm] 2 [mm]\gdw[/mm] x [mm]\le[/mm] 1. Es gilt also x [mm]\le[/mm] 1 und x
> > > 1. Dies ist eine widersprüchliche Aussage. Als Lösungsmenge
> > erhalte ich dann L = [mm]\{x \in \IR | x \le 0\}[/mm] . Was mache
> > ich falsch?
>  >  Denn die Lösung ist L = [mm]\{x \in \IR | x \le 1\}[/mm]
>  >  
> >
> > Ich habe diese Frage in keinem Forum auf anderen
> > Internetseiten gestellt.
>  

Wieso? Welche meinst Du?

Bezug
                        
Bezug
Problem mit Ungleichung...!: Antwort
Status: (Antwort) fertig Status 
Datum: 22:55 So 28.06.2009
Autor: fencheltee


> > > Gegeben sei die Ungleichung 2-|1-x| [mm]\ge[/mm] 1+x.
>  >  >  
> > > 1. Fall: Sei 1-x [mm]\ge[/mm] 0 [mm]\gdw[/mm] x [mm]\le[/mm] 1 , dann gilt 2-1x [mm]\ge[/mm]
> > die klammer ist falsch aufgelöst worden ;-)

für den 1. fall gilt ja 2-|1-x| [mm] \ge [/mm] 1+x [mm] \gdw 2-(1-x)\ge [/mm] 1+x [mm] \gdw 2-1+x\ge1+x... [/mm]

>  >  > 1+x [mm]\gdw[/mm] 1-x [mm]\ge[/mm] 1+x [mm]\gdw[/mm] 2x [mm]\le[/mm] 0 [mm]\gdw[/mm] x [mm]\le[/mm] 0. Eine

> > > Teillösung ist damit x [mm]\le[/mm] 0.
>  >  >  2. Fall: Sei 1-x < 0 [mm]\gdw[/mm] x > 1. dann gilt 2-(-(1-x)

> > [mm]\ge[/mm]
> > > 1+x [mm]\gdw[/mm] 2-(-1+x) [mm]\ge[/mm] 1+x [mm]\gdw[/mm] 2+1-x [mm]\ge[/mm] 1+x [mm]\gdw[/mm] 3-x [mm]\ge[/mm]
> > > 1+x [mm]\gdw[/mm] 2x [mm]\le[/mm] 2 [mm]\gdw[/mm] x [mm]\le[/mm] 1. Es gilt also x [mm]\le[/mm] 1 und x
> > > > 1. Dies ist eine widersprüchliche Aussage. Als Lösungsmenge
> > > erhalte ich dann L = [mm]\{x \in \IR | x \le 0\}[/mm] . Was mache
> > > ich falsch?
>  >  >  Denn die Lösung ist L = [mm]\{x \in \IR | x \le 1\}[/mm]
>  >  
> >  

> > >
> > > Ich habe diese Frage in keinem Forum auf anderen
> > > Internetseiten gestellt.
> >  

> Wieso? Welche meinst Du?  


Bezug
                                
Bezug
Problem mit Ungleichung...!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:57 So 28.06.2009
Autor: Morpheus87

Achja, oh man, ja stimmt! Vielen Dank! :)

Bezug
                                        
Bezug
Problem mit Ungleichung...!: Antwort
Status: (Antwort) fertig Status 
Datum: 23:01 So 28.06.2009
Autor: leduart

Hallo
Bitte Mitteilungen nicht als Frage stellen.
Gruss leduart

Bezug
        
Bezug
Problem mit Ungleichung...!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:03 So 28.06.2009
Autor: Morpheus87

Dann kommt für den 1. Fall also x+1 [mm] \ge [/mm] x+1 [mm] \gdw [/mm] 0>=0 raus. Das ist eine allgemein gültige Aussage. Die Fallvoraussetzung x<=1 ist also Teillösung und Gesamtlösung, da es für den 2. Fall keine Teillösung gibt, alles richtig?

Bezug
                
Bezug
Problem mit Ungleichung...!: Antwort
Status: (Antwort) fertig Status 
Datum: 23:12 So 28.06.2009
Autor: fencheltee


> Dann kommt für den 1. Fall also x+1 [mm]\ge[/mm] x+1 [mm]\gdw[/mm] 0>=0 raus.
> Das ist eine allgemein gültige Aussage. Die
> Fallvoraussetzung x<=1 ist also Teillösung und
> Gesamtlösung, da es für den 2. Fall keine Teillösung gibt,
> alles richtig?

[ok]

Bezug
                
Bezug
Problem mit Ungleichung...!: Antwort
Status: (Antwort) fertig Status 
Datum: 23:12 So 28.06.2009
Autor: leduart

Hallo
richtig
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]