www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Operations Research" - Problem mit Simplex-Alg.
Problem mit Simplex-Alg. < Operations Research < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Operations Research"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Problem mit Simplex-Alg.: Tipp
Status: (Frage) beantwortet Status 
Datum: 11:35 Fr 08.04.2011
Autor: james_kochkessel

Aufgabe
Gegeben sei das folgende Lineare Programm (LP):
F(x) = [mm] x_{1} [/mm] + [mm] x_{2} [/mm] |---> max
st.
[mm] -2x_{1} [/mm] + [mm] x_{2} \le [/mm] 4
[mm] x_{1} [/mm] - [mm] 2x_{2} \le [/mm] 4
[mm] x_{1}, x_{2} \ge [/mm] 0.
a) Lösen Sie das LP graphisch.
b) Lösen Sie das LP mit Hilfe des Simplex-Algorithmus.

Hallo, ich hab da ein paar Probleme.
Ich kann das zum einen nichtmal einzeichnen, da ich sonst 2 Geraden bekomme, die sich nichtmal schneiden sondern sich glaube ich wohl nie schneiden, da ich ja die Geraden [mm] x_{1} [/mm] = -2 und [mm] x_{2} [/mm] = 4 bzw. [mm] x_{2} [/mm] = -2 und [mm] x_{1} [/mm] = 4 rausbekommen würde, die sich dann nicht schneiden.

Wenn ich dann b) versuche mit dem Simplex-Algorithmus, den ich hoffe das ich ihn richtig angewendet habe, muss ich nach dem ersten Schritt schon aufhören, da ich nicht weiterrechnen kann, und da ich anfangs wählen kann ob ich mit der Pivotspalte [mm] x_{1} [/mm] oder [mm] x_{2} [/mm] anfangen kann(da beide bei F = -1 haben), komme ich immer auf das selbe Ergebnis, entweder [mm] x_{1} [/mm] = 4 oder eben [mm] x_{2} [/mm] = 4 mit einem Funktionswert von F = 4.
Vielleicht kann mir da ja jemand einen Tipp geben, ich häng grad total.

        
Bezug
Problem mit Simplex-Alg.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:51 Fr 08.04.2011
Autor: fred97


> Gegeben sei das folgende Lineare Programm (LP):
>  F(x) = [mm]x_{1}[/mm] + [mm]x_{2}[/mm] |---> max

>  st.
>  [mm]-2x_{1}[/mm] + [mm]x_{2} \le[/mm] 4
>  [mm]x_{1}[/mm] - [mm]2x_{2} \le[/mm] 4
>  [mm]x_{1}, x_{2} \ge[/mm] 0.
>  a) Lösen Sie das LP graphisch.
>  b) Lösen Sie das LP mit Hilfe des Simplex-Algorithmus.



Irgendetwas stimmt hier nicht. Alle Punkte [mm] (x_1,x_2) [/mm] mit [mm] x_1=x_2 \ge [/mm] 0 erfüllen die Bedingungen

         .
$ [mm] -2x_{1} [/mm] $ + $ [mm] x_{2} \le [/mm] $ 4
$ [mm] x_{1} [/mm] $ - $ [mm] 2x_{2} \le [/mm] $ 4
$ [mm] x_{1}, x_{2} \ge [/mm] $ 0

Für solche Punkte ist aber [mm] F(x)=2x_1 [/mm]  , und dieses F hat kein Maximum !!


Also: wie lautet die Aufgabe korrekt ?

FRED

>  Hallo, ich hab da ein paar Probleme.
>  Ich kann das zum einen nichtmal einzeichnen, da ich sonst
> 2 Geraden bekomme, die sich nichtmal schneiden sondern sich
> glaube ich wohl nie schneiden, da ich ja die Geraden [mm]x_{1}[/mm]
> = -2 und [mm]x_{2}[/mm] = 4 bzw. [mm]x_{2}[/mm] = -2 und [mm]x_{1}[/mm] = 4
> rausbekommen würde, die sich dann nicht schneiden.
>  
> Wenn ich dann b) versuche mit dem Simplex-Algorithmus, den
> ich hoffe das ich ihn richtig angewendet habe, muss ich
> nach dem ersten Schritt schon aufhören, da ich nicht
> weiterrechnen kann, und da ich anfangs wählen kann ob ich
> mit der Pivotspalte [mm]x_{1}[/mm] oder [mm]x_{2}[/mm] anfangen kann(da beide
> bei F = -1 haben), komme ich immer auf das selbe Ergebnis,
> entweder [mm]x_{1}[/mm] = 4 oder eben [mm]x_{2}[/mm] = 4 mit einem
> Funktionswert von F = 4.
> Vielleicht kann mir da ja jemand einen Tipp geben, ich
> häng grad total.


Bezug
                
Bezug
Problem mit Simplex-Alg.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:56 Fr 08.04.2011
Autor: james_kochkessel

Hey,
danke erstmal.
Hab alles nochmal genau angeschaut, ist exakt die Fragestellung vom Aufgabenblatt.
Was mir jedoch auch seltsam vorkommt ist, dass sie bei sonstigen Aufgaben die Lösungen vorgegeben hatte mit [mm] x_{1} [/mm] = ... etc.
Hier jedoch fehlen diese Lösungen, also vielleicht sollen wir das ja auch nicht rechnen können und nur rausfinden, das es nicht geht.
Oder es ist ein Fehler in der Aufgabenstellung, naja hmmm.

Bezug
                        
Bezug
Problem mit Simplex-Alg.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 So 10.04.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Operations Research"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]