www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Komplexität & Berechenbarkeit" - Primitiv-rekursiv
Primitiv-rekursiv < Komplex. & Berechnb. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Komplexität & Berechenbarkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primitiv-rekursiv: Tipp
Status: (Frage) überfällig Status 
Datum: 15:28 Fr 20.11.2009
Autor: stefan00

Aufgabe
Es sei [mm] $g:\IN \times \IN \to \IN$ [/mm] definiert durch [mm] $g(x,y):=x^{2 \cdot y}$ [/mm] für alle $x,y [mm] \in \IN$. [/mm] Zeigen Sie, dass f primitiv-rekursiv ist.

Hallo,

ich darf auf folgende primitiv-rekursive Funktionen zurückgreifen:
1.) [mm] $c_n^{(k)}:\IN^k \to \IN, c_n^{(k)}(x_1,...,x_k):=n$ [/mm] für alle $k,n [mm] \in \IN$ [/mm] (konstante Funktionen).
2.) [mm] $s:\IN^2 \to \IN, [/mm] s(x,y):=x+y$ (Summe).
3.) [mm] $V:\IN \to \IN, [/mm] V(x):=x-1$ (Vorgängerfunktion).
4.) [mm] $d:\IN^2 \to \IN, [/mm] d(x,y):=x-y$ (arithmetische Differenz).
5.) [mm] $m:\IN^2 \to \IN, [/mm] m(x,y):=x [mm] \cdot [/mm] y$ (Multiplikation).

Ich würde in diesem Fall auf die Funktion 5.) und 3.) zurückgreifen, ich kann ja im Prinzip m solange mit sich selbst aufrufen bis y=1 ist, in einem Pascal-Programm kann ich das auch noch gut formulieren, aber wie mache ich das hier, also rein formal?

Vielen Dank für die Hilfe.

Gruß, Stefan.



        
Bezug
Primitiv-rekursiv: Lösungsversuch
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:22 Sa 21.11.2009
Autor: stefan00

Sei [mm] $g(x,0):=1=c_1^{(2)}(x,y)$ [/mm]
$g(x,y+1):=g(x,y) [mm] \cdot x^2=m(g(x,y),x^2)$ [/mm]
Da die Funktion $g$ sich auf (1) und (5) zurückführen lassen kann, ist $g(x,y)$ auch primitiv-rekursiv, also $g [mm] \in [/mm] PRK$.

Bezug
        
Bezug
Primitiv-rekursiv: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 So 22.11.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Komplexität & Berechenbarkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]