www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Primelement 2
Primelement 2 < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primelement 2: Verbesserung
Status: (Frage) beantwortet Status 
Datum: 11:23 Mi 21.11.2007
Autor: GorkyPark

Aufgabe
Für welcher dieser Ringe [mm] \IZ,\IZ[i], \IR[x], \IZ[\wurzel{-11}] [/mm] ist 2 ein Primelement?

Hallo zusammen,

die Fragestellung ist klar und trotzdem habe ich kleine Schwierigkeiten. Aber gehen wir Schritt für Schritt:

in [mm] \IZ [/mm] ist 2 natürlich eine Primzahl.
in [mm] \IZ[i] [/mm] ist 2 kein Primelement, denn 2=(1+i)(1-i)  und 2 teilt keine dieser beiden Faktoren.

jetzt aber kommen die Schwierigkeiten.

Wie ist eigentlich die Teilbarkeit in [mm] \IR[x] [/mm] definiert? Sei p ein Polynom, welches durch 2 teilbar ist. Findet man dann eine Zerlegung von p mit Faktoren, welche nicht durch 2 teilbar sind?

Oder andere Idee: Primelemente sind ja nur für Nichteinheiten und verschieden von 0 definiert. 2 ist in [mm] \IR[x] [/mm] aber eine Einheit!

Kann mir jemand den richtigen Weg zeigen?

Nun in: [mm] \IZ[\wurzel{-11}]. [/mm] Hmmmm... Ich habe mir, das so überlegt:

[mm] (1-\wurzel{-11})(1+\wurzel{-11})=12 [/mm]

2 teilt 12, aber keinen der beiden Faktoren, also kein Primelement. Dafür ist 2 aber irreduzibel.

Hätte jemand Zeit mir rasch zu helfen? Vielen Dank!!

Euer,
GorkyPark

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Primelement 2: Antwort
Status: (Antwort) fertig Status 
Datum: 22:06 Mi 21.11.2007
Autor: felixf

Hallo

> Für welcher dieser Ringe [mm]\IZ,\IZ[i], \IR[x], \IZ[\wurzel{-11}][/mm] [/i][/mm]
> [mm][i]ist 2 ein Primelement?[/i][/mm]
> [mm][i] Hallo zusammen,[/i][/mm]
> [mm][i] [/i][/mm]
> [mm][i]die Fragestellung ist klar und trotzdem habe ich kleine [/i][/mm]
> [mm][i]Schwierigkeiten. Aber gehen wir Schritt für Schritt:[/i][/mm]
> [mm][i] [/i][/mm]
> [mm][i]in [mm]\IZ[/mm] ist 2 natürlich eine Primzahl.[/i][/mm]
> [mm][i] in [mm]\IZ[i][/mm] ist 2 kein Primelement, denn 2=(1+i)(1-i) und 2 [/i][/mm][/i][/mm]
> [mm][i][mm][i]teilt keine dieser beiden Faktoren.[/i][/mm][/i][/mm]

Ja.

> [mm][i][mm][i] [/i][/mm][/i][/mm]
> [mm][i][mm][i]jetzt aber kommen die Schwierigkeiten.[/i][/mm][/i][/mm]
> [mm][i][mm][i] [/i][/mm][/i][/mm]
> [mm][i][mm][i]Wie ist eigentlich die Teilbarkeit in [mm]\IR[x][/mm] definiert? Sei [/i][/mm][/i][/mm]
> [mm][i][mm][i]p ein Polynom, welches durch 2 teilbar ist. Findet man dann [/i][/mm][/i][/mm]
> [mm][i][mm][i]eine Zerlegung von p mit Faktoren, welche nicht durch 2 [/i][/mm][/i][/mm]
> [mm][i][mm][i]teilbar sind?[/i][/mm][/i][/mm]

2 ist in [mm] $\IR[x]$ [/mm] eine Einheit, da es bereits in [mm] $\IR$ [/mm] eine Einheit ist. Und Primelemente sind insb. keine Einheiten.

> [mm][i][mm][i]Oder andere Idee: Primelemente sind ja nur für [/i][/mm][/i][/mm]
> [mm][i][mm][i]Nichteinheiten und verschieden von 0 definiert. 2 ist in [/i][/mm][/i][/mm]
> [mm][i][mm][i][mm]\IR[x][/mm] aber eine Einheit![/i][/mm][/i][/mm]

Exakt.

> [mm][i][mm][i]Nun in: [mm]\IZ[\wurzel{-11}].[/mm] Hmmmm... Ich habe mir, das so [/i][/mm][/i][/mm]
> [mm][i][mm][i]überlegt:[/i][/mm][/i][/mm]
> [mm][i][mm][i] [/i][/mm][/i][/mm]
> [mm][i][mm][i][mm](1-\wurzel{-11})(1+\wurzel{-11})=12[/mm][/i][/mm][/i][/mm]
> [mm][i][mm][i] [/i][/mm][/i][/mm]
> [mm][i][mm][i]2 teilt 12, aber keinen der beiden Faktoren, also kein [/i][/mm][/i][/mm]
> [mm][i][mm][i]Primelement. Dafür ist 2 aber irreduzibel. [/i][/mm][/i][/mm]

Kannst du das auch begruenden? Wenn ja, bist du fertig.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]