www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Finanzmathematik" - Present Value
Present Value < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Present Value: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:01 Sa 05.12.2015
Autor: Mathics

Hallo,

ich habe zwei Formeln um den Present Value zu berechnen:

(1): X * [mm] (1+r)^{-t} [/mm]

(2): X * [mm] e^{-r(t-T)} [/mm]


Was ist hier genau der Unterschied? Kann ich einfach immer die erste Formel benutzen?


LG
Mathics

        
Bezug
Present Value: Analyse
Status: (Antwort) fertig Status 
Datum: 12:16 Sa 05.12.2015
Autor: Al-Chwarizmi


> ich habe zwei Formeln um den Present Value zu berechnen:
>  
> (1): X * [mm](1+r)^{-t}[/mm]
>  
> (2): X * [mm]e^{-r(t-T)}[/mm]
>  
>
> Was ist hier genau der Unterschied? Kann ich einfach immer
> die erste Formel benutzen?


Hallo Mathics

Die beiden Formeln beruhen auf etwas unterschiedlichen
Bezeichnungen, und insbesondere steht das r in beiden
Formeln für unterschiedliche Größen, welche aber beide
das Wachstum bestimmen.

Nennen wir den Barwert ("present value") einmal K .

Bei der Formel (1)  steht X  für das daraus entstehende
Endkapital nach t Jahren bei Verzinsung (mit Zinseszinsen)
zu p% p.a.
Ferner sei r = p% = [mm] \frac{p}{100} [/mm]
Dann gilt

     X = [mm] K*(1+r)^t [/mm]  und folglich     K = [mm] X*(1+r)^{-t} [/mm]

In der Formel (2)  kommt zusätzlich die Größe T vor,
welche den aktuellen Zeitpunkt (für den Barwert)
bezeichnet. Das Wachstum wird durch die Formel

     X(t) = [mm] K*e^{r*(t-T)} [/mm]  

also mittels einer e-Funktion beschrieben. Das r in
dieser neuen Formel hat also eine etwas andere Bedeutung
als in der Formel (1).


Um den genauen Zusammenhang zwischen den
unterschiedlichen r-Werten klar zu machen, möchte
ich nun die beiden Werte durch Indices unterscheiden.
Ferner können wir, um die Formeln einander gegenüber
zu stellen, T:=0  setzen. So kommen wir auf die Formeln:

    (1)    [mm] K_1(t) [/mm] = [mm] X*(1+r_1)^t [/mm]

    (1)    [mm] K_2(t) [/mm] = [mm] X*e^{r_2*t} [/mm]

Um Übereinstimmung zu erhalten, müsste also gelten:


      $\ [mm] (1+r_1)^t\ [/mm] =\ [mm] e^{r_2*t}$ [/mm]

Daraus folgt

      $\ [mm] 1+r_1\ [/mm] =\ [mm] e^{r_2}$ [/mm]

also

      $\ [mm] r_1\ [/mm] =\ [mm] e^{r_2}-1$ [/mm]

bzw.

      $\ [mm] r_2\ [/mm] =\ [mm] ln(1+r_1)$ [/mm]


Für sehr kleine Werte, also  [mm] |r_1|<<1 [/mm]  oder  [mm] |r_2|<<1 [/mm]  , liegen die beiden
Werte nahe beieinander, für  [mm] r\to [/mm] 0  stimmen sie "asymptotisch" überein.

LG  ,   Al-Chwarizmi  




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]