www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Logik" - Prädikate, prim rek.
Prädikate, prim rek. < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Prädikate, prim rek.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:05 Fr 26.04.2013
Autor: Lu-

Aufgabe
Kann wer ein Prädikat angeben, was nicht primitv rekursiv ist?

P [mm] \subseteq M^n [/mm] zu suchen mit
[mm] \chi_p [/mm] : [mm] \IN^k [/mm] -> {0,1} [mm] \subseteq \IN [/mm]
[mm] \chi_p (x_1,.., x_n)=\begin{cases} 1, & \mbox{für } P(x_1 ,.., x_n \mbox{ gilt} \\ 0, & \mbox{sonst} \end{cases} [/mm]
mit [mm] x_j \in \IN, [/mm] 1 [mm] \le [/mm]  j [mm] \le [/mm] n
nicht primitv rekursiv


Die gängigen Relationen wie [mm] \le, \ge [/mm] , = sind alle primitiv rekursiv.
Das Bsp sollte - denke ich - auf ein unendliches Prädikat.

        
Bezug
Prädikate, prim rek.: Antwort
Status: (Antwort) fertig Status 
Datum: 06:23 Sa 27.04.2013
Autor: tobit09

Hallo Lu-,


leider kann ich auch kein nicht primitiv rekursives Prädikat explizit angeben, daher lasse ich die Frage als nur teilweise beantwortet markiert.

Dass es jedoch nicht primitiv rekursive Prädikate geben muss, kann man sich durch ein Kardinalitätsargument überlegen: Es gibt überabzählbar viele Teilmengen von [mm] $\IN$, [/mm] aber nur abzählbar viele primitiv rekursive Funktionen und somit auch nur abzählbar viele Teilmengen von [mm] $\IN$, [/mm] die primitiv rekursiv sind.

(Für nicht primitiv rekursive Funktionen siehe z.B. die []Ackermannfunktion oder die []Fleißiger-Bieber-Funktion.)


Viele Grüße
Tobias

Bezug
        
Bezug
Prädikate, prim rek.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 So 28.04.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]